Bài 44 trang 112 SBT toán 9 tập 1Giải bài 44 trang 112 sách bài tập toán 9. Đoạn thẳng LN vuông góc với đoạn thẳng AB tại trung điểm N của AB; M là một điểm của đoạn thẳng LN và khác với L,N. Quảng cáo
Đề bài Đoạn thẳng \(LN\) vuông góc với đoạn thẳng \(AB\) tại trung điểm \(N\) của \(AB\); \(M\) là một điểm của đoạn thẳng \(LN\) và khác với \(L,N\). Hãy so sánh các góc \(\widehat {LAN}\) và \(\widehat {MBN}\). Phương pháp giải - Xem chi tiết Cho hình vẽ:
Ta có: \(\tan \alpha = \dfrac{{AB}}{{AC}}.\) Lời giải chi tiết Tam giác \(ALN\) vuông tại \(N\) nên ta có: \(tg\widehat {LAN} = \dfrac{{NL}}{{AN}}\) (1) Tam giác \(BNM\) vuông tại \(N\) nên ta có: \(tg\widehat {MBN} = \dfrac{{NM}}{{NB}}\) (2) Mặt khác: \(AN = NB\) (gt) (3) \(NL > NM\) (4) (do M thuộc đoạn thẳng LN) Từ (1), (2), (3) và (4) suy ra: \(tg\widehat {MBN} < tg\widehat {LAN}\) Suy ra: \(\widehat {MBN} < \widehat {LAN}\) ( vì \(\alpha \) tăng thì \(tg\alpha \) tăng). Loigiaihay.com
Quảng cáo
|