Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thứcCho (S) là diện tích phần hình phẳng được tô màu như Hình 4.7. Khi đó diện tích (S) là A. (S = intlimits_a^b {left| {fleft( x right) - gleft( x right)} right|dx} ). B. (S = intlimits_a^m {left| {fleft( x right) - gleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right) - fleft( x right)} right|dx} ). C. (S = intlimits_a^m {left| {fleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right)} right|dx} ). D. (S = i Quảng cáo
Đề bài Cho \(S\) là diện tích phần hình phẳng được tô màu như Hình 4.7. Khi đó diện tích \(S\) là A. \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \). B. \(S = \int\limits_a^m {\left| {f\left( x \right) - g\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right) - f\left( x \right)} \right|dx} \). C. \(S = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \). D. \(S = \int\limits_a^m {\left| {g\left( x \right)} \right|dx} + \int\limits_m^b {\left| {f\left( x \right)} \right|dx} \). Phương pháp giải - Xem chi tiết Xét hình phẳng đang cần tìm diện tích, ta chia hình thành hai hình nhỏ và tính diện tích từng hình. \({S_1}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục \(Ox\), đường thẳng \(x = a,x = m\) và \({S_2}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = g\left( x \right)\), trục \(Ox\), đường thẳng \(x = m,x = b\). Áp dụng công thức tính diện tích ứng dụng tích phân đã học. Lời giải chi tiết Từ hình vẽ ta thấy \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục \(Ox\), đường thẳng \(x = a,x = m\) và \({S_2}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = g\left( x \right)\), trục \(Ox\), đường thẳng \(x = m,x = b\). Ta có \({S_1} = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} \) và \({S_2} = \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \) suy ra \(S = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \). Chọn C
Quảng cáo
|