Giải bài 39 trang 92 SBT toán 10 - Cánh diềuCho tam giác đều ABC cạnh a. Tính: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho tam giác đều ABC cạnh a. Tính: a) \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right|\) b) \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\) c) \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\) Phương pháp giải - Xem chi tiết Bước 1: Lấy G là trọng tâm tam giác ABC Bước 2: Sử dụng quy tắc cộng, quy tắc trừ, quy tắc 3 điểm (lấy G là điểm trung gian) để biến đổi và tính độ dài các vectơ tương ứng Lời giải chi tiết Gọi G là trọng tâm tam giác ABC Khi đó \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \), \(GA = GB = GC = \frac{{a\sqrt 3 }}{3}\) a) Ta có: \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\) b) Ta có: \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = BC = a\) c) Ta có: \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\left( {\overrightarrow {GB} - \overrightarrow {GA} } \right) + \left( {\overrightarrow {GC} - \overrightarrow {GA} } \right)} \right| = \left| {\left( {\overrightarrow {GB} + \overrightarrow {GC} } \right) - 2\overrightarrow {GA} } \right|\) (1) Lại có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} \) (2) Từ (1) và (2) suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| { - \overrightarrow {GA} - 2\overrightarrow {GA} } \right| = \left| { - 3\overrightarrow {GA} } \right| = 3\left| {\overrightarrow {GA} } \right| = 3GA = 3.\frac{{a\sqrt 3 }}{3} = a\sqrt 3 \)
Quảng cáo
|