Bài 3.21 trang 155 SBT hình học 10

Giải bài 3.21 trang 155 sách bài tập hình học 10. Lập phương trình của đường tròn (C)...

Quảng cáo

Đề bài

Lập phương trình của đường tròn \(\left( C \right)\) tiếp xúc với các trục tọa độ và đi qua \(M(4;2)\).

Phương pháp giải - Xem chi tiết

- Gọi dạng của phương trình đường tròn \(\left( C \right)\) tiếp xúc với cả \(Ox\) và \(Oy\) là \({\left( {x - a} \right)^2} + {\left( {y - a} \right)^2} = {a^2}\)

Lời giải chi tiết

Gọi tâm \(I\left( {a;b} \right)\)

\(\left( C \right)\) tiếp xúc với hai trục tọa độ \( \Leftrightarrow d\left( {I,Ox} \right) = d\left( {I,Oy} \right)=R\) \( \Leftrightarrow \left| b \right| = \left| a \right| \Leftrightarrow \left[ \begin{array}{l}b = a\\b =  - a\end{array} \right.\)

Do \(\left( C \right)\) đi qua \(M\left( {4;2} \right)\) nên \(\left( C \right)\) nằm ở góc phần tư thứ nhất hay \(R=b = a > 0\).

Phương trình của \(\left( C \right)\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - a} \right)^2} = {a^2}\), ta có:

\(M \in \left( C \right)\) \( \Leftrightarrow {\left( {4 - a} \right)^2} + {\left( {2 - a} \right)^2} = {a^2}\) \( \Leftrightarrow {a^2} - 12a + 20 = 0 \Leftrightarrow \left[ \begin{array}{l}a = 2\\a = 10\end{array} \right.\)

Với \(a = 2 \) \(\Rightarrow \left( {{C_1}} \right):{\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\).

Với \(a = 10 \) \(\Rightarrow \left( {{C_2}} \right):{\left( {x - 10} \right)^2} + {\left( {y - 10} \right)^2} = 100\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close