Giải bài 3 trang 75 SBT toán 10 - Cánh diềuTính giá trị của biểu thức (T = {sin ^2}{25^0} + {sin ^2}{75^0} + {sin ^2}{115^0} + {sin ^2}{165^0}) Quảng cáo
Đề bài Tính giá trị của biểu thức \(T = {\sin ^2}{25^0} + {\sin ^2}{75^0} + {\sin ^2}{115^0} + {\sin ^2}{165^0}\) Phương pháp giải - Xem chi tiết Bước 1: Xét mối liên hệ giữa các góc trong T với nhau hoặc với các góc trung gian Bước 2: Biến đổi các giá trị lượng giác của các góc về chung giá trị lượng giác của một góc Bước 3: Sử dụng công thức lượng giác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) để rút gọn biểu thức T Lời giải chi tiết Ta có: \(\left\{ \begin{array}{l}\sin {25^0} = \cos ({90^0} - {25^0}) = \cos {65^0}\\\sin {75^0} = \cos ({90^0} - {75^0}) = \cos {15^0}\\\sin {115^0} = \sin ({180^0} - {115^0}) = \sin {65^0}\\\sin {165^0} = \sin ({180^0} - {165^0}) = \sin {15^0}\end{array} \right.\) Khi đó \(T = {\sin ^2}{25^0} + {\sin ^2}{75^0} + {\sin ^2}{115^0} + {\sin ^2}{165^0}\)\( = {\cos ^2}{65^0} + {\cos ^2}{15^0} + {\sin ^2}{65^0} + {\sin ^2}{15^0}\) \( = ({\sin ^2}{65^0} + {\cos ^2}{65^0}) + ({\sin ^2}{15^0} + {\cos ^2}{15^0})\)\( = 1 + 1 = 2\)
Quảng cáo
|