Giải bài 3 trang 68 SGK Toán 7 tập 2 - Cánh diềuViết đa thức trong mỗi trường hợp sau: a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6; b) Đa thức bậc hai có hệ số tự do bằng 4; c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0; d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0. Quảng cáo
Đề bài Viết đa thức trong mỗi trường hợp sau: a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6; b) Đa thức bậc hai có hệ số tự do bằng 4; c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0; d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0. Phương pháp giải - Xem chi tiết a) Đa thức bậc nhất có dạng \(ax + b\)với a ≠ 0. b) Đa thức bậc hai có dạng \(a{x^2} + bx + c\)với a ≠ 0. c) Đa thức bậc bốn có dạng \(a{x^4} + b{x^3} + c{x^2} + d\) với a ≠ 0. d) Đa thức bậc sáu có dạng \(a{x^6} + b{x^5} + c{x^4} + d{x^3} + e{x^2} + gx + h\) với a ≠ 0. Lời giải chi tiết a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6 tức \(a = - 2;b = 6\) \( - 2x + 6\). b) Đa thức bậc hai có hệ số tự do bằng 4: \({x^2} + x + 4\). c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0: \({x^4} + 0.{x^3} + {x^2} + 1 = {x^4} + {x^2} + 1\). d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0: \({x^6} + 0.{x^5} + {x^4} + 0.{x^3} + {x^2} + 0.x = {x^6} + {x^4} + {x^2}\).
Quảng cáo
|