Giải bài 16 trang 48 SBT toán 10 - Cánh diềuNêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau Quảng cáo
Đề bài Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau: a) \(y = 4{x^2} + 6x - 5\) b) \(y = - 3{x^2} + 10x - 4\) Phương pháp giải - Xem chi tiết Cho hàm số \(y = a{x^2} + bx + c\) Bước 1: Xác định các hệ số a, b, c. Tính \(\frac{{ - b}}{{2a}}\) Bước 2: + Nếu \(a > 0\) Hàm số đồng biến trên \((\frac{{ - b}}{{2a}}; + \infty )\) và nghịch biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\) + Nếu \(a < 0\) Hàm số đồng biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\) và nghịch biến trên \((\frac{{ - b}}{{2a}}; + \infty )\) Lời giải chi tiết a) Hàm số\(y = 4{x^2} + 6x - 5\) có \(a = 4,b = 6,c = - 5 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.4}} = - \frac{3}{4}\) Vì \(a = 4 > 0\) nên hàm số đồng biến trên khoảng \(\left( { - \frac{3}{4}; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - \frac{3}{4}} \right)\) b) Hàm số \(y = - 3{x^2} + 10x - 4\) có \(a = - 3,b = 10,c = - 4 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 10}}{{2.\left( { - 3} \right)}} = \frac{5}{3}\) Vì \(a = - 3 < 0\) nên hàm số đồng biến trên khoảng \(\left( { - \infty ;\frac{5}{3}} \right)\), nghịch biến trên khoảng \(\left( {\frac{5}{3}; + \infty } \right)\)
Quảng cáo
|