Bài 14 trang 195 SBT toán 9 tập 2Giải bài 14 trang 195 sách bài tập toán 9. Lập một phương trình bậc hai với hệ số nguyên có hai nghiệm là... Quảng cáo
Đề bài Lập một phương trình bậc hai với hệ số nguyên có hai nghiệm là \(\dfrac{1}{{10 - \sqrt {72} }}\) và \(\dfrac{1}{{10 + 6\sqrt 2 }}\) Phương pháp giải - Xem chi tiết Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) (với \(S^2\ge 4P)\) thì hai số đó là hai nghiệm của phương trình \(x^2-Sx+P=0.\) Lời giải chi tiết +) Tổng của hai nghiệm là \(S={x_1} + {x_2} = \dfrac{1}{{10 - \sqrt {72} }}\)\( + \dfrac{1}{{10 + 6\sqrt 2 }}\)\( = \dfrac{1}{{10 - \sqrt {72} }} + \dfrac{1}{{10 + \sqrt {72} }}\) \( = \dfrac{{10 + \sqrt {72} + 10 - \sqrt {72} }}{{{{10}^2} - {{\left( {\sqrt {72} } \right)}^2}}}\)\( = \dfrac{{20}}{{28}}.\) +) Tích hai nghiệm là \(P={x_1}.{x_2} = \dfrac{1}{{10 - \sqrt {72} }}.\dfrac{1}{{10 + 6\sqrt 2 }} \)\(= \dfrac{1}{{28}}.\) Nhận thấy \({S^2} = {\left( {\dfrac{{20}}{{28}}} \right)^2} > \dfrac{4}{{28}} = 4P\) Nên phương trình phải tìm là :\({x^2} - \dfrac{{20}}{{28}}x + \dfrac{1}{{28}} = 0\) hay \(28{x^2} - 20x + 1 = 0.\) Loigiaihay.com
Quảng cáo
|