Giải bài 1 trang 15 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) 5x2 – 9x + 1 = 0 b) 9x2 – 12x + 4 = 0 c) 4x2 + 9x + 12 = 0 d) 5x2 – (2sqrt 3 )x – 3 = 0

Quảng cáo

Đề bài

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:

a) 5x2 – 9x + 1 = 0

b) 9x2 – 12x + 4 = 0

c) 4x2 + 9x + 12 = 0

d) 5x2\(2\sqrt 3 \)x – 3 = 0

Phương pháp giải - Xem chi tiết

Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) có nghiệm x1, x2 thì tổng và tích của hai nghiệm đó là:

\(S = {x_1} + {x_2} =  - \frac{b}{a};P = {x_1}.{x_2} = \frac{c}{a}\)

Lời giải chi tiết

a) Ta có \(\Delta  = 61 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có \({x_1} + {x_2} =  - \frac{b}{a} = \frac{9}{5};{x_1}.{x_2} = \frac{c}{a} = \frac{1}{5}.\)

b) Ta có \(\Delta ' = 0\) nên phương trình có nghiệm kép.

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{b}{a} = \frac{{12}}{9} = \frac{4}{3};{x_1}.{x_2} = \frac{c}{a} = \frac{4}{9}\).

c) Ta có \(\Delta  =  - 111 < 0\) nên phương trình vô nghiệm.

d) Phương trình a = 5 và c = - 3 trái dấu nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{b}{a} = \frac{{2\sqrt 3 }}{5};{x_1}.{x_2} = \frac{c}{a} =  - \frac{3}{5}\).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close