Xác định tâm sai, tiêu điểm và đường chuẩn tương ứng của mỗi đường conic sau:
Xem chi tiếtXác định tâm sai, tọa độ tiêu điểm và phương trình đường chuẩn tương ứng của mỗi đường conic sau:
Xem chi tiếtCho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\). Chứng tỏ rằng \(\frac{c}{a} > 1.\)
Xem chi tiếtCho biết tỉ số \(e = \frac{c}{a}\) của các elip lần lượt là \(\frac{3}{4},\frac{1}{2},\frac{1}{4}\)(Hình 8). Tính tỉ số \(\frac{b}{a}\) theo \(e\) và nêu nhận xét về sự thay đổi của hình dạng elip gắn với hình chữ nhật cơ sở khi \(e\) thay đổi.
Xem chi tiếtCho đường thẳng (d:x - y + 1 = 0) và điểm (F(1;1)). Viết phương trình của đường conic nhận F là tiêu điểm, d là đường chuẩn và có tâm sai e trong mỗi trường hợp sau:
Xem chi tiếtViết phương trình của đường conic có tâm sai bằng 1, tiêu điểm (F(1;0)) và đường chuẩn là (Delta :x + 1 = 0)
Xem chi tiếtTìm bán kính qua tiêu của điểm đã cho trên các parabol sau: a) Điểm ({M_1}(3; - 6)) trên (({P_1}):{y^2} = 12x)
Xem chi tiếtCho điểm M (x; y) trên hypebol (H) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 7). Gọi \(d(M,{\Delta _1}),d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến các đường thẳng \({\Delta _1},{\Delta _2}.\)
Xem chi tiếtCho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
Xem chi tiết