-
Bài 1 trang 47 SBT toán 12 - Kết nối tri thức
Giá trị của tham số m để hàm số (y = frac{1}{3}{x^3} - m{x^2} + 4x - 2023) đạt cực trị tại (x = 2) là A. Không tồn tại m. B. (m = - 2). C. (m = 2). D. (m=0).
Xem lời giải -
Bài 2 trang 48 SBT toán 12 - Kết nối tri thức
Cho hàm số (y = {x^3} + 3{x^2} + 1) có đồ thị (C). Xét đường thẳng đi qua điểm (Aleft( { - 3;1} right)) và có hệ số góc k. Điều kiện của k để đường thẳng đó cắt đồ thị (C) tại ba điểm phân biệt. A. (0 < k < 1). B. (k > 0). C. (1 < k < 9). D. (0 < k ne 9).
Xem lời giải -
Bài 3 trang 48 SBT toán 12 - Kết nối tri thức
Đồ thị trong hình vẽ dưới đây là của hàm số nào? A. (y = frac{{{x^2} - 2x}}{{x + 1}}). B. (y = frac{{{x^2} + 2x}}{{x + 1}}). C. (y = frac{{{x^2} + 2x + 2}}{{x + 1}}). D. (y = frac{{2x}}{{x + 1}}).
Xem lời giải -
Bài 4 trang 48 SBT toán 12 - Kết nối tri thức
Tất cả các giá trị thực của tham số m để đường thẳng (y = x + m - 1) cắt đồ thị hàm số (y = frac{{2x + 1}}{{x + 1}}) tại hai điểm A, B thỏa mãn (AB = 2sqrt 3 ) là A. (m = 2 pm sqrt {10} ). B. (m = 4 pm sqrt 3 ). C. (m = 2 pm sqrt 3 ). D. (m = 4 pm sqrt {10} ).
Xem lời giải -
Bài 5 trang 48 SBT toán 12 - Kết nối tri thức
Cho hàm số (y = frac{{{x^2} - 2x + 1}}{{x + 1}}) có đồ thị (C). Khẳng định nào sau đây sai? A. Đường thẳng (x = - 1) là tiệm cận đứng của đồ thị (C). B. Đường thẳng (y = 1) là tiệm cận ngang của đồ thị (C). C. Đường thẳng (y = x - 3) là tiệm cận xiên của đồ thị (C). D. Hàm số có hai cực trị.
Xem lời giải -
Bài 6 trang 49 SBT toán 12 - Kết nối tri thức
Cho hàm số (fleft( x right)) là một hàm số liên tục trên đoạn (left[ {a;b} right]) và (Fleft( x right)) là một nguyên hàm của (fleft( x right)) trên (left[ {a;b} right]). Khi đó (intlimits_a^b {fleft( x right)dx} ) có giá trị bằng A. (Fleft( b right) - Fleft( a right)). B. (Fleft( b right) - Fleft( a right) + C), (C) là hằng số. C. (Fleft( a right) - Fleft( b right)). D. (Fleft( a right) - Fleft( b right) + C), (C) là hằng số.
Xem lời giải -
Bài 7 trang 49 SBT toán 12 - Kết nối tri thức
Phát biểu nào sau đây là sai? A. (int {dx} = x + C). B. (int {{x^3}dx} = frac{{{x^4}}}{4} + C). C. (int {frac{1}{x}dx} = ln x + C) . D. (int {{e^x}dx} = {e^x} + C).
Xem lời giải -
Bài 8 trang 49 SBT toán 12 - Kết nối tri thức
Nguyên hàm (Fleft( x right)) của hàm số (fleft( x right) = 4{x^3} + 2x - 1) thỏa mãn (Fleft( 1 right) = 10) là A. (Fleft( x right) = {x^4} + {x^2} - 1). B. (Fleft( x right) = {x^4} - {x^2} + 10). C. (Fleft( x right) = {x^4} + {x^2} - x + 9) . D. (Fleft( x right) = {x^4} + {x^2} - x + 10).
Xem lời giải -
Bài 9 trang 49 SBT toán 12 - Kết nối tri thức
Cho (intlimits_0^4 {fleft( x right)dx} = 5) và (intlimits_0^4 {gleft( x right)dx} = 6). Giá trị của (intlimits_0^4 {left[ {fleft( x right) + 2gleft( x right)} right]dx} ) là A. 17. B. 16. C. 11 . D. 22.
Xem lời giải -
Bài 10 trang 49 SBT toán 12 - Kết nối tri thức
Tích phân (pi intlimits_1^3 {{{left( {x - 1} right)}^2}dx} ) dùng để tính một trong các đại lượng sau, đó là các đại lượng nào? A. Diện tích hình phẳng giới hạn bởi các đường: (y = {left( {x - 1} right)^2},{rm{ }}y = 0,{rm{ }}x = 1,{rm{ }}x = 3). B. Thể tích khối tròn xoay hình thành khi quay hình phẳng giới hạn bởi các đường: (y = x - 1,{rm{ }}y = 0,{rm{ }}x = 1,{rm{ }}x = 3) quay quanh trục Ox. C. Diện tích hình phẳng giới hạn bở
Xem lời giải