Bài 26 trang 120 Sách bài tập Hình học lớp 12 Nâng caoCho bốn điểm A(2;-1;6), B(-3;-1;-4),C(5;-1;0), D(1;2;1). Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho bốn điểm A(2;-1;6), B(-3;-1;-4),C(5;-1;0), D(1;2;1). LG a Chứng minh ABC là tam giác vuông. Tính bán kính đường tròn nội tiếp của tam giác. Lời giải chi tiết: Ta có \(\overrightarrow {BA} = (5;0;10),\) \(\overrightarrow {CA} = ( - 3;0;6),\) \(\overrightarrow {CB} = ( - 8;0; - 4).\) Do \(\overrightarrow {CA} .\overrightarrow {CB} = 24 - 24 = 0\) nên ABC là tam giác vuông tại C. \({S_{ABC}} = {1 \over 2}CA.CB = {1 \over 2}.3\sqrt 5 .4\sqrt 5 = 30.\) Ta lại có \(p = {1 \over 2}(AB + BC + CA) \) \(= {1 \over 2}(5\sqrt 5 + 3\sqrt 5 + 4\sqrt 5 ) = 6\sqrt 5 .\) Mặt khác S = p.r, suy ra \(r = {S \over p} = {{30} \over {6\sqrt 5 }} = \sqrt 5 .\) LG b Tính thể tích tứ diện ABCD. Lời giải chi tiết: Ta có \(\eqalign{ & \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } \right] = \left( {\left| \matrix{ 0 \hfill \cr 0 \hfill \cr} \right.\left. \matrix{ 10 \hfill \cr 4 \hfill \cr} \right|;\left| \matrix{ 10 \hfill \cr 4 \hfill \cr} \right.\left. \matrix{ 5 \hfill \cr 8 \hfill \cr} \right|;\left| \matrix{ 5 \hfill \cr 8 \hfill \cr} \right.\left. \matrix{ 0 \hfill \cr 0 \hfill \cr} \right|} \right)\cr&\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;= (0;60;0), \cr & \overrightarrow {BD} = (4;3;5) \cr & \Rightarrow {V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {BA} .\overrightarrow {BC} } \right].\overrightarrow {BD} } \right|\cr& \;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;= {1 \over 6}\left| {0.4 + 60.3 + 0.5} \right| = 30 \cr} \) LG c Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. Lời giải chi tiết: Gọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD. Từ điều kiện \(I{A^2} = I{B^2},I{A^2} = I{C^2},I{A^2} = I{D^2}\), ta có hệ phương trình \(\left\{ \matrix{ - 10x = 20z + 15 = 0 \hfill \cr 6x - 12z + 15 = 0 \hfill \cr - 2x + 6y - 10z + 35 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = - {1 \over 2} \hfill \cr y = - {{13} \over 3} \hfill \cr z = 1. \hfill \cr} \right.\) Vậy mặt cầu cần tìm có tâm \(I\left( { - {1 \over 2}; - {{13} \over 3};1} \right)\) và bán kính là \(\eqalign{ & R = IC \cr&= \sqrt {{{\left( {5 + {1 \over 2}} \right)}^2} + {{\left( { - 1 + {{13} \over 3}} \right)}^2} + {{(0 - 1)}^2}} \cr & = \sqrt {{{121} \over 4} + {{100} \over 9} + 1} = \sqrt {{{1525} \over {36}}.} \cr} \) Do đó phương trình mặt cầu ngoại tiếp tứ diện ABCD là \({\left( {x + {1 \over 2}} \right)^2} + {\left( {y + {{13} \over 3}} \right)^2} + {\left( {z - 1} \right)^2} = {{1525} \over {36}}.\) Loigiaihay.com
Quảng cáo
|