Quảng cáo
  • Câu hỏi mục 1 trang 55, 56, 57, 58

    Cho hình hộp ABCD.A'B'C'D' (Hình 2.7). Một vật bắt đầu di chuyển từ điểm A theo độ dịch chuyển bằng \(\overrightarrow {DC} \), sau đó tiếp tục di chuyển theo độ dịch chuyển bằng \(\overrightarrow {B'C'} \). Hỏi vật sẽ di chuyển đến điểm nào?

    Xem lời giải
  • Câu hỏi mục 2 trang 58, 59, 60

    Cho hình hộp ABCD.EFGH có O và P tương ứng là giao điểm các đường chéo của hai đáy ABCD và EFGH. M là trung điểm của đoạn thẳng EP (Hình 2.14). Xét mối quan hệ về hướng và độ dài của các cặp vectơ: a) \(\overrightarrow {BD} \) và \(\overrightarrow {FP} \). b) \(\overrightarrow {EM} \) và \(\overrightarrow {CA} \).

    Xem lời giải
  • Quảng cáo
  • Câu hỏi mục 3 trang 60, 61, 62, 63, 64

    Cho hình lăng trụ ABC.A'B'C' có \(\widehat {BAC} = \alpha \). Gọi M là một điểm bất kỳ thuộc cạnh bên AA' (Hình 2.18). a) Vẽ hai vectơ \(\overrightarrow {MP} \) và \(\overrightarrow {MQ} \) lần lượt bằng \(\overrightarrow {AB} \) và \(\overrightarrow {A'C'} \). ABC.MPQ có phải là hình lăng trụ không? Vì sao? b) Trong mặt phẳng (MPQ), hãy xác định góc giữa hai vectơ \(\overrightarrow {MP} \), \(\overrightarrow {MQ} \) và so sánh góc đó với \(\alpha \).

    Xem lời giải
  • Bài 2.3 trang 64

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)

    Xem lời giải
  • Bài 2.4 trang 64

    Cho hình hộp ABCD.EFGH. Đặt \(\overrightarrow {AB} = \vec a,\overrightarrow {AD} = \vec b,\overrightarrow {AE} = \vec c\). Gọi M là trung điểm của đoạn BG. Hãy biểu diễn \(\overrightarrow {AM} \) theo \(\vec a,\vec b,\vec c\).

    Xem lời giải
  • Bài 2.5 trang 65

    Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, G' lần lượt là trọng tâm các tam giác ABC và A'B'C'. O là giao điểm của hai đường thẳng AB' và A'B. a) Chứng minh rằng các đường thẳng GO và CG' song song với nhau. b) Tính độ dài của \(\overrightarrow {GO} \)trong trường hợp ABC.A'B'C' là hình lăng trụ đứng, cạnh bên AA' = 3 và đáy là tam giác đều có cạnh bằng 2.

    Xem lời giải
  • Bài 2.6 trang 65

    Trọng lực \(\vec P\) là lực hấp dẫn do Trái Đất tác dụng lên một vật được tính bởi công thức \(\vec P = m\vec g\), trong đó \(m\) là khối lượng của vật (đơn vị: kg), \(\vec g\) là vectơ gia tốc rơi tự do, có hướng đi xuống và có độ lớn \(g = 9,8{\mkern 1mu} {\rm{m/}}{{\rm{s}}^2}\). Xác định hướng và độ lớn của trọng lực (đơn vị: N) tác dụng lên quả bóng có khối lượng 450 gam.

    Xem lời giải
  • Bài 2.7 trang 65

    Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính: a) \(\overrightarrow {BC} .\overrightarrow {AH} ;\) b) \(\overrightarrow {AF} .\overrightarrow {EG} ;\) c) \(\overrightarrow {AC} .\overrightarrow {FE} .\)

    Xem lời giải
  • Bài 2.8 trang 65

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a và (widehat {BAA'} = widehat {BAD} = widehat {DAA'} = {60^circ }). Tính độ dài đường chéo AC’.

    Xem lời giải
  • Bài 2.9 trang 65

    Cho tứ diện ABCD. Hai điểm M và N theo thứ tự là trung điểm của BC và AD. Cho biết AB = 10, CD = 6, MN = 7. a) Chứng minh rằng (overrightarrow {NM} = frac{1}{2}left( {overrightarrow {AB} + overrightarrow {DC} } right)). b) Từ kết quả câu a, hãy tính (overrightarrow {AB} .overrightarrow {DC} ). c) Tính (left( {overrightarrow {AB} ,overrightarrow {DC} } right)).

    Xem lời giải
  • Quảng cáo