Lý thuyết Tỉ số lượng giác của góc nhọn Toán 9 Chân trời sáng tạo1. Định nghĩa tỉ số lượng giác của một góc nhọn \({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\) \({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\) \(\cot \alpha = \frac{1}{{\tan \alpha }}\). \(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \). Quảng cáo
1. Định nghĩa tỉ số lượng giác của một góc nhọn
Tip học thuộc nhanh:
Chú ý: Với góc nhọn \(\alpha \), ta có: \(0 < \sin \alpha < 1\); \(0 < \cos \alpha < 1\). \(\cot \alpha = \frac{1}{{\tan \alpha }}\). Ví dụ: Theo định nghĩa của tỉ số lượng giác, ta có: \(\sin \alpha = \frac{{AC}}{{BC}} = \frac{4}{5}\), \(\cos \alpha = \frac{{AB}}{{BC}} = \frac{3}{5}\), \(\tan \alpha = \frac{{AC}}{{AB}} = \frac{4}{3}\), \(\cot \alpha = \frac{{AB}}{{AC}} = \frac{3}{4}\) Bảng giá trị lượng giác của các góc nhọn đặc biệt
Ví dụ: \(P = \frac{{\sin {{30}^0}.\cos {{60}^0}}}{{\tan {{45}^0}}} = \frac{{\frac{1}{2}.\frac{1}{2}}}{1} = \frac{1}{4}\). 2. Tỉ số lượng giác của hai góc phụ nhau Định lí về tỉ số lượng giác của hai góc phụ nhau
Ví dụ: \(\begin{array}{l}\sin {60^0} = \cos \left( {{{90}^0} - {{60}^0}} \right) = \cos {30^0};\\\cos {52^0}30' = \sin \left( {{{90}^0} - {{52}^0}30'} \right) = \sin {37^0}30';\\\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right) = \cot {10^0};\\\cot {82^0} = \tan \left( {{{90}^0} - {{82}^0}} \right) = \tan {8^0}.\end{array}\) 3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn Người ta thường dùng các đơn vị số đo góc là độ (kí hiệu: \(^0\)), phút (kí hiệu: \('\)), giây (kí hiệu: \(''\)). Ta có thể sử dụng nhiều loại máy tính cầm tay để tính các tỉ số lượng giác của góc nhọn và tính số đo của góc nhọn khi biết một tỉ số lượng giác của nó. Lưu ý: ta cần đổi đơn vị đo về độ. Tính các tỉ số lượng giác của các góc nhọn Để tính tỉ số lượng giác của một góc \(\alpha \), ta dùng các nút: Để tính \(\cot \alpha \), ta tính \(\cot \alpha = \frac{1}{{\tan \alpha }}\) hoặc \(\tan \left( {{{90}^0} - \alpha } \right)\). Bảng tóm tắt cách tính tỉ số lượng giác của một góc nhọn Xác định số đo của góc nhọn khi biết một tỉ số lượng giác của góc đó Bảng tóm tắt cách tính số đo của một góc nhọn khi biết một tỉ số lượng giác Để tìm \(\alpha \) khi biết \(\cot \alpha \), ta tính \(\tan \alpha = \frac{1}{{\cot \alpha }}\) và dùng \(\tan \alpha \) để tính \(\alpha \). Một số công thức mở rộng: +) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) +) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) +) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) +) \(\tan \alpha .\cot \alpha = 1\) +) \(\frac{1}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\) +) \(\frac{1}{{{{\sin }^2}\alpha }} = {\cot ^2}\alpha + 1\)
Quảng cáo
|