Giải mục 4 trang 21 SGK Toán 8 tập 1– Chân trời sáng tạo

Sử dụng quy tắc chuyển vế và các tính chất của phép toán, hoàn thành các biến đổi sau vào vở

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Sử dụng quy tắc chuyển vế và các tính chất của phép toán, hoàn thành các biến đổi sau vào vở:

\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)                      \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)

Phương pháp giải:

Áp dụng quy tắc chuyển vế, các tính chất của phép toán, hằng đẳng thức: Bình phương của một tổng, một hiệu.

Lời giải chi tiết:

\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{{\left( {a + b} \right)}^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{a^2} + 2ab + {b^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\end{array}\)                       \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{{\left( {a - b} \right)}^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{a^2} - 2ab + {b^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\end{array}\)

Thực hành 7

Video hướng dẫn giải

Viết các đa thức sau dưới dạng tích:

a) \(8{y^3} + 1\)                                 

b) \({y^3} - 8\)

Phương pháp giải:

Biến đổi đa thức về dạng tổng, hiệu của hai lập phương rồi áp dụng hằng đẳng thức tổng, hiệu của hai lập phương.

Lời giải chi tiết:

a) \(8{y^3} + 1 = {\left( {2y} \right)^3} + {1^3} = \left( {2y + 1} \right)\left[ {{{\left( {2y} \right)}^2} - 2y.1 + {1^2}} \right] = \left( {2y + 1} \right)\left( {4{y^2} - 2y + 1} \right)\)   

b) \({y^3} - 8 = {y^3} - {2^3} = \left( {y - 2} \right)\left( {{y^2} + 2y + {2^2}} \right) = \left( {y - 2} \right)\left( {{y^2} + 2y + 4} \right)\)

Thực hành 8

Video hướng dẫn giải

Tính:

a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\)                                             

b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right)\)

Phương pháp giải:

Biến đổi tích của hai đa thức về dạng vế phải của hằng đẳng thức: Tổng, hiệu của hai lập phương.

Lời giải chi tiết:

a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = \left( {x + 1} \right)\left( {{x^2} - x.1 + {1^2}} \right) = {x^3} + {1^3} = {x^3} + 1\)          

b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right) = \left( {2x - \dfrac{1}{2}} \right)\left[ {{{\left( {2x} \right)}^2} + 2x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] = {\left( {2x} \right)^3} - {\left( {\dfrac{1}{2}} \right)^3} = 8{x^3} - \dfrac{1}{8}\)

Vận dụng 4

Video hướng dẫn giải

Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.

Phương pháp giải:

Áp dụng công thức tính thể tích của hình lập phương

Áp dụng hằng đẳng thức: Hiệu của hai lập phương

Lời giải chi tiết:

Thể tích phần còn lại của khối lập phương là:

\(\begin{array}{l}{\left( {2x + 1} \right)^3} - {\left( {x + 1} \right)^3}\\ = \left[ {\left( {2x + 1} \right) - \left( {x + 1} \right)} \right].\left[ {{{\left( {2x + 1} \right)}^2} + \left( {2x + 1} \right)\left( {x + 1} \right) + {{\left( {x + 1} \right)}^2}} \right]\\ = x.\left[ {4{x^2} + 4x + 1 + 2{x^2} + 2x + x + 1 + {x^2} + 2x + 1} \right]\\ = x.\left( {7{x^2} + 9x + 3} \right)\\ = 7{x^3} + 9{x^2} + 3x\end{array}\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close