Giải mục 1 trang 81, 82 SGK Toán 12 tập 2 - Cánh diều

Hình 38 mô tả một mặt cầu trong không gian. Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu được lập như thế nào?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Trả lời câu hỏi khởi động trang 81 SGK Toán 12 Cánh diều

Hình 38 mô tả một mặt cầu trong không gian.

Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu được lập như thế nào?

Phương pháp giải:

Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu tâm I(a; b; c) bán kính R là: \(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}}  = R\).

Lời giải chi tiết:

Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu tâm I(a; b; c) bán kính R là: \(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}}  = R\).

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 81 SGK Toán 12 Cánh diều

Nếu quay đường tròn tâm I bán kính R quanh đường kính AB một vòng (Hình 39) thì hình tạo thành được gọi là mặt cầu. Những điểm thuộc mặt cầu đó cách I một khoảng bằng bao nhiêu?

Phương pháp giải:

Khi quay đường tròn tâm I bán kính R quanh đường kính AB một vòng thì điểm thuộc mặt cầu đó cách I một khoảng bằng R.

Lời giải chi tiết:

Khi quay đường tròn tâm I bán kính R quanh đường kính AB một vòng thì điểm thuộc mặt cầu đó cách I một khoảng bằng R.

LT1

Trả lời câu hỏi Luyện tập 1 trang 82 SGK Toán 12 Cánh diều

Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 2; 3) và mặt cầu tâm I đi qua điểm A(0; 4; 5). Tính bán kính R của mặt cầu đó.

Phương pháp giải:

Sử dụng kiến thức về vị trí của điểm so với mặt cầu để tìm bán kính của mặt cầu: Cho mặt cầu tâm I, bán kính R và điểm M bất kì trong không gian. Điểm M thuộc mặt cầu tâm I, bán kính R khi và chỉ khi \(IM = R\).

Lời giải chi tiết:

Vì mặt cầu tâm I đi qua điểm A nên IA là bán kính của mặt cầu.

Bán kính của mặt cầu là: \(R = IA = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}}  = 3\).

  • Giải mục 2 trang 82, 83 SGK Toán 12 tập 2 - Cánh diều

    Cho hai điểm M(x; y; z) và I(a; b; c). a) Viết công thức tính khoảng cách giữa hai điểm M và I. b) Nêu mối liên hệ giữa x, y và z để M nằm trên mặt cầu tâm I bán kính R.

  • Giải mục 3 trang 85 SGK Toán 12 tập 2 - Cánh diều

    Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D (5 121; 658; 0). Tìm vị trí cuối cùng trên đoạn ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng.

  • Giải bài tập 1 trang 85 SGK Toán 12 tập 2 - Cánh diều

    Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là: A. \(\left( { - 2; - 3;4} \right)\). B. \(\left( {2;3; - 4} \right)\). C. \(\left( {2; - 3; - 4} \right)\). D. \(\left( {2; - 3;4} \right)\).

  • Giải bài tập 2 trang 85 SGK Toán 12 tập 2 - Cánh diều

    Bán kính của mặt cầu (S): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) có tọa độ là A. 3. B. 9. C. 81. D. \(\sqrt 3 \).

  • Giải bài tập 3 trang 86 SGK Toán 12 tập 2 - Cánh diều

    Mặt cầu (S) tâm I(-5; -2; 3) bán kính 4 có phương trình là: A. \({\left( {x - 5} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 4\). B. \({\left( {x - 5} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 16\). C. \({\left( {x + 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\). D. \({\left( {x + 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close