Giải câu 8 trang 20 SBT toán 10 - Chân trời sáng tạo

Với giá trị nào của tham số m thì phương trình \(\left( {2m + 6} \right){x^2} + 4mx + 3 = 0\) có hai nghiệm phân biệt?

Quảng cáo

Đề bài

Với giá trị nào của tham số m thì phương trình \(\left( {2m + 6} \right){x^2} + 4mx + 3 = 0\) có hai nghiệm phân biệt?

A. \(m <  - \frac{3}{2}\) hoặc \(m > 3\)                                        B. \( - \frac{3}{2} < m < 3\)

C. \(m <  - 3\) hoặc \( - 3 < m <  - \frac{3}{2}\)hoặc \(m > 3\)      D. \( - 3 < m <  - \frac{3}{2}\)hoặc \(m > 3\)

Lời giải chi tiết

Lời giải chi tiết

Phương trình \(\left( {2m + 6} \right){x^2} + 4mx + 3 = 0\) có hai nghiệm phân biệt khi và chỉ khi

\(\left\{ \begin{array}{l}2m + 6 \ne 0\\\Delta ' = {\left( {2m} \right)^2} - 3\left( {2m + 6} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne  - 3\\4{m^2} - 6m - 18 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne  - 3\\\left[ \begin{array}{l}m <  - \frac{3}{2}\\m > 3\end{array} \right.\end{array} \right.\)

\( \Rightarrow m \in ( - \infty ;\frac{{ - 3}}{2}) \cup \left( {3; + \infty } \right){\rm{\backslash }}\{  - 3\} \)

Hay \(m \in ( - \infty ; - 3) \cup ( - 3;\frac{{ - 3}}{2}) \cup \left( {3; + \infty } \right)\)

Chọn C.

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close