Giải bài tập 8 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạoHộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai. a) Tính xác suất để hai viên bi lấy ra ở hộp thứ hai là bi đỏ. b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ. Quảng cáo
Đề bài Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai. a) Tính xác suất để hai viên bi lấy ra ở hộp thứ hai là bi đỏ. b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ. Phương pháp giải - Xem chi tiết Gọi \(A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất là màu đỏ”, \(B\) là biến cố “Hai viên bi được lấy ra ở hộp thứ hai là màu đỏ”. a) Xác suất cần tính là \(P\left( B \right)\). Sử dụng công thức xác suất toàn phần để tính xác suất này. b) Xác suất cần tính là \(P\left( {A|B} \right)\). Sử dụng công thức Bayes để tính xác suất này. Lời giải chi tiết Gọi \(A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất là màu đỏ”, \(B\) là biến cố “Hai viên bi được lấy ra ở hộp thứ hai là màu đỏ”. a) Biến cố \(\bar A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất không phải là hai viên bi đỏ”, đồng nghĩa với “Hai viên bi lấy ra ở hộp thứ nhất là một bi xanh và một bi đỏ” (Do không có 2 bi xanh trong hộp thứ nhất). Ta có \(P\left( A \right) = \frac{{C_5^2}}{{C_6^2}} = \frac{2}{3}\), suy ra \(P\left( {\bar A} \right) = 1 - \frac{2}{3} = \frac{1}{3}\). Trường hợp lấy được 2 viên bi đỏ ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Do đó \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{7}{{15}}\). Trường hợp lấy được 1 viên bi đỏ và 1 viên bi xanh ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 4 viên bi xanh và 6 viên bi đỏ. Do đó \(P\left( {B|\bar A} \right) = \frac{{C_6^2}}{{C_{10}^2}} = \frac{1}{3}\) Vậy xác suất để lấy được 2 viên bi đỏ ở hộp thứ hai là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{2}{3}.\frac{7}{{15}} + \frac{1}{3}.\frac{1}{3} = \frac{{19}}{{45}}\). b) Xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu hai viên bi lấy ra từ hộp thứ hai cũng là bi đỏ là: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{3}.\frac{7}{{15}}}}{{\frac{{19}}{{45}}}} = \frac{{14}}{{19}}\).
Quảng cáo
|