Giải bài tập 5.35 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức

Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2; - 1;1} \right)\) và nhận vectơ \(\overrightarrow u = \left( {1;2; - 3} \right)\) làm một vectơ chỉ phương là A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}\). B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 3}}\). C. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\). D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{1}\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2; - 1;1} \right)\) và nhận vectơ \(\overrightarrow u  = \left( {1;2; - 3} \right)\) làm một vectơ chỉ phương là

A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}\).

B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

C. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{1}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).

Lời giải chi tiết

Phương trình đường thẳng d đi qua \(I\left( {2; - 1;1} \right)\) và nhận vectơ \(\overrightarrow u  = \left( {1;2; - 3} \right)\) làm một vectơ chỉ phương là: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

Chọn C

  • Giải bài tập 5.36 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;0; - 1} \right),B\left( {2;1;1} \right)\). Phương trình đường thẳng AB là A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = t\\z = 1 + 2t\end{array} \right.\). B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = t\\z = - 1 + 2t\end{array} \right.\). C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 1 + 2t\end{array} \right.\). D. \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = t\\z = - 1 + 2t\end{array} \right.\).

  • Giải bài tập 5.37 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) và vuông góc với mặt phẳng (P): \(x - 2y + z - 3 = 0\) là A. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\). B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 3}}{1}\). C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\). D. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\).

  • Giải bài tập 5.38 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho mặt cầu (S): \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 4\). Tọa độ tâm I và bán kính R của (S) lần lượt là A. \(I\left( {1;0;3} \right),R = 4\). B. \(I\left( {1;0;3} \right),R = 2\). C. \(I\left( { - 1;0;3} \right),R = 2\). D. \(I\left( { - 1;0;3} \right),R = 4\).

  • Giải bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho mặt cầu (S): \({x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là A. \(I\left( {1; - 2; - 1} \right),R = 3\). B. \(I\left( {1;2;1} \right),R = 9\). C. \(I\left( {1;2;1} \right),R = 3\). D. \(I\left( {1; - 2; - 1} \right),R = 9\).

  • Giải bài tập 5.40 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho ba điểm \(A\left( {1;0; - 1} \right),B\left( {0;1;2} \right),C\left( { - 1; - 2;3} \right)\). a) Viết phương trình mặt phẳng (ABC). b) Viết phương trình đường thẳng AC. c) Viết phương trình mặt cầu đường kính AC. d) Viết phương trình mặt cầu có tâm A và đi qua B.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close