Giải bài tập 5.1 trang 39 SGK Toán 12 tập 2 - Kết nối tri thứcTrong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 1} \right)\) và vuông góc với trục Ox. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 1} \right)\) và vuông góc với trục Ox. Phương pháp giải - Xem chi tiết Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết phương trình: Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) thì có phương trình là: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0 \Leftrightarrow Ax + By + Cz + D = 0\) với \(D = - \left( {A{x_0} + B{y_0} + C{z_0}} \right)\) Lời giải chi tiết Gọi (P) là mặt phẳng đi qua điểm \(M\left( {1;2; - 1} \right)\) và vuông góc với trục Ox. Vì (P) vuông góc với trục Ox nên (P) nhận \(\overrightarrow n = \left( {1;0;0} \right)\) làm một vectơ pháp tuyến. Mà (P) đi qua điểm \(M\left( {1;2; - 1} \right)\) nên phương trình (P) là: \(1\left( {x - 1} \right) + 0.\left( {y - 2} \right) + 0.\left( {z + 1} \right) = 0 \Leftrightarrow x - 1 = 0\)
Quảng cáo
|