Giải bài tập 2.29 trang 73 SGK Toán 12 tập 1 - Kết nối tri thứcTrong không gian Oxyz, cho \(\overrightarrow a = \left( {1; - 2;2} \right),\overrightarrow b = \left( { - 2;0;3} \right)\). Khẳng định nào dưới đây là sai? A. \(\overrightarrow a + \overrightarrow b = \left( { - 1; - 2;5} \right)\). B. \(\overrightarrow a - \overrightarrow b = \left( {3; - 2; - 1} \right)\). C. \(3\overrightarrow a = \left( {3; - 2;2} \right)\). D. \(2\overrightarrow a + \overrightarrow b = \left( {0; - 4;7} \right)\). Quảng cáo
Đề bài Trong không gian Oxyz, cho \(\overrightarrow a = \left( {1; - 2;2} \right),\overrightarrow b = \left( { - 2;0;3} \right)\). Khẳng định nào dưới đây là sai? Phương pháp giải - Xem chi tiết Sử dụng kiến thức hệ về biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ để tìm tọa độ của vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\). Ta có: + \(\overrightarrow a + \overrightarrow b = \left( {x + x';y + y';z + z'} \right)\); + \(\overrightarrow a - \overrightarrow b = \left( {x - x';y - y';z - z'} \right)\); + \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực. Lời giải chi tiết \(\overrightarrow a + \overrightarrow b = \left( {1 - 2; - 2 + 0;2 + 3} \right) = \left( { - 1; - 2;5} \right)\) nên A đúng. \(\overrightarrow a - \overrightarrow b = \left( {1 + 2; - 2 - 0;2 - 3} \right) = \left( {3; - 2; - 1} \right)\) nên B đúng. \(3\overrightarrow a = \left( {3.1;3.\left( { - 2} \right);3.2} \right) = \left( {3; - 6;6} \right)\) nên C sai. \(2\overrightarrow a + \overrightarrow b = \left( {2.1 - 2;2.\left( { - 2} \right) + 0;2.2 + 3} \right) = \left( {0; - 4;7} \right)\) nên D đúng. Chọn C
Quảng cáo
|