Giải bài tập 1.4 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức

Xét chiều biến thiên của các hàm số sau: a) (y = sqrt {4 - {x^2}} ); b) (y = frac{x}{{{x^2} + 1}}).

Quảng cáo

Đề bài

Xét chiều biến thiên của các hàm số sau:
a) \(y = \sqrt {4 - {x^2}} \);
b) \(y = \frac{x}{{{x^2} + 1}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về các bước để xét tính đơn điệu để xét chiều biến thiên của hàm số: Các bước để xét tính đơn điệu của hàm số \(y = f\left( x \right)\):

1. Tìm tập xác định của hàm số.

2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...} \right)\) mà tại đó đạo hàm bằng 0 hoặc không tồn tại.

3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên của hàm số.

4. Nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Tập xác định: \(D = \left[ { - 2;2} \right]\).

Ta có: \(y' = \frac{{\left( {4 - {x^2}} \right)'}}{{2\sqrt {4 - {x^2}} }} = \frac{{ - x}}{{\sqrt {4 - {x^2}} }},y' = 0 \Leftrightarrow x = 0\left( {tm} \right)\)

Lập bảng biến thiên của hàm số:

Hàm số \(y = \sqrt {4 - {x^2}} \) đồng biến trên khoảng \(\left( { - 2;0} \right)\).

Hàm số \(y = \sqrt {4 - {x^2}} \) nghịch biến trên khoảng \(\left( {0;2} \right)\).

b) Tập xác định: \(D = \mathbb{R}\).

Ta có: 

\(y' = \frac{{x'({x^2} + 1) - x({x^2} + 1)'}}{{{{({x^2} + 1)}^2}}} = \frac{{{x^2} + 1 - 2{x^2}}}{{{{({x^2} + 1)}^2}}} = \frac{{ - {x^2} + 1}}{{{{({x^2} + 1)}^2}}}\).

\(y' = 0 \Leftrightarrow \frac{{ - {x^2} + 1}}{{{{({x^2} + 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 1}\end{array}} \right.\).

Lập bảng biến thiên của hàm số:

Hàm số \(y = \frac{x}{{{x^2} + 1}}\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\), \(\left( {1; + \infty } \right)\).

Hàm số \(y = \frac{x}{{{x^2} + 1}}\) đồng biến trên khoảng \(\left( { - 1;1} \right)\).

  • Giải bài tập 1.5 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức

    Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số (Nleft( t right) = frac{{25t + 10}}{{t + 5}},t ge 0), trong đó N(t) được tính bằng nghìn người. a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và (mathop {lim }limits_{t to + infty } Nleft( t right)). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.

  • Giải bài tập 1.6 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

    Đồ thị của đạo hàm bậc nhất (y = f'left( x right)) của hàm số f(x) được cho trong Hình 1.13: a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích. b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.

  • Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

    Tìm cực trị của các hàm số sau: a) (y = 2{x^3} - 9{x^2} + 12x - 5);(y = {x^4} - 4{x^2} + 2) b) ; c) (y = frac{{{x^2} - 2x + 3}}{{x - 1}}); d) (y = sqrt {4x - 2{x^2}} ).

  • Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hàm số (y = fleft( x right) = left| x right|). a) Tính các giới hạn (mathop {lim }limits_{x to {0^ + }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}) và (mathop {lim }limits_{x to {0^ - }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}). Từ đó suy ra hàm số không có đạo hàm tại (x = 0). b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại (x = 0). (Xem Hình 1.4)

  • Giải bài tập 1.9 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

    Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hóa bằng hàm số (fleft( t right) = frac{{5;000}}{{1 + 5{e^{ - t}}}},t ge 0,) trong đó thời gian t được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm f’(t) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất?

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close