Giải bài tập 13 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho hàm số \(y = \frac{{{x^2} + 4x - 1}}{{x - 1}}\) a) Khảo sát và vẽ đồ thị của hàm số. b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [2; 4].

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

 

 

Cho hàm số \(y = \frac{{{x^2} + 4x - 1}}{{x - 1}}\)

a) Khảo sát và vẽ đồ thị của hàm số.

b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [2; 4].

 

Phương pháp giải - Xem chi tiết

Bước 1. Tìm tập xác định của hàm số

Bước 2. Xét sự biến thiên của hàm số

− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).

− Lập bảng biến thiên của hàm số.

Bước 3. Vẽ đồ thị của hàm số

− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ

− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

− Vẽ đồ thị hàm số.

b) Lập bảng biến thiên và quan sát

 

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\backslash \{ 1\} \)

  • Chiều biến thiên:

\(y' = \frac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\)

Trên các khoảng (\( - \infty \); -1), (3; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-1; 3) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

  • Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 4x - 1}}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 4x - 1}}{{x - 1}} =  - \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 4x - 1}}{{{x^2} - x}} = 1;b = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 4x - 1}}{{x - 1}} - x) = 5\) nên y = x + 5 là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 4x - 1}}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 4x - 1}}{{x - 1}} =  - \infty \) nên x = 1 là tiệm cận đứng của đồ thị hàm số

Bảng biến thiên:

Ta có: \(y = 0 \Leftrightarrow \frac{{{x^2} + 4x - 1}}{{x - 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2 - \sqrt 5 \\x =  - 2 + \sqrt 5 \end{array} \right.\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (\( - 2 - \sqrt 5 \); 0) và (\( - 2 + \sqrt 5 \); 0)

b)  Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[2;4]} y = y(3) = 10\) và \(\mathop {\max }\limits_{[2;4]} y = y(2) = 11\)

 

  • Giải bài tập 15 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo

    Trong một nhà hàng, mỗi tuần để chế biến x phần ăn (x lấy giá trị trong khoảng từ 30 đến 120) thì chi phí trung bình (đơn vị: nghìn đồng) của một phần ăn được cho bởi công thức: \(\overline C (x) = 2x - 230 + \frac{{7200}}{x}\) a) Khảo sát và vẽ đồ thị hàm số \(\overline C (x)\) trên [30; 120]. b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.

  • Giải bài tập 16 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo

    Điện trở R (\(\Omega \)) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất \(\rho \)(\(\Omega \)m), chiều dài \(\ell \)(m) và tiết diện S (\({m^2}\)) được cho bởi công thức \(R = \rho \frac{\ell }{S}\) (Vật lí 11 – Chân trời sáng tạo, Nhà xuất bản Giáo dục Việt Nam, 2023, trang 104) Giả sử người ta khảo sát sự biến thiên của điện trở R theo tiết diện S (ở nhiệt độ \(20^\circ C\)) của một sợi dây điện dài 10m làm từ kim loại có điện trở suất \(\rho \) và thu được đồ thị hàm

  • Giải bài tập 14 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

    Cho một hình trụ nội tiếp trong hình nón có chiều cao bằng 12 cm và bán kính đáy bằng 5 cm (Hình 4a). Người ta cắt hình nón, trụ này theo mặt phẳng chứa đường thẳng nối đỉnh và tâm hình tròn đáy của hình nón thì thu được một hình phẳng như Hình 4b

  • Giải bài tập 12 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) a) Khảo sát và vẽ đồ thị của hàm số. b) Gọi A là giao điểm của đồ thị hàm số với trục Oy, I là giao điểm của hai đường tiệm cận của đồ thị hàm số. Tìm điểm B đối xứng với A qua I. Chứng minh rằng điểm B cũng thuộc đồ thị hàm số này.

  • Giải bài tập 11 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

    Cho hàm số (y = frac{1}{3}{x^3} - {x^2} + 4). a) Khảo sát và vẽ đồ thị của hàm số. b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close