Giải bài tập 1 trang 82 SGK Toán 12 tập 1 - Chân trời sáng tạoBảng dưới đây thống kê cự li ném tạ của một vận động viên. Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Phương pháp giải - Xem chi tiết Tính giá trị đại diện Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\) Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai. Lời giải chi tiết Cỡ mẫu: n = 100 Số trung bình: \(\overline x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\) Phương sai: \({S^2} = \frac{{13.19,{{25}^2} + 45.19,{{75}^2} + 24.20,{{25}^2} + 12.20,{{75}^2} + 6.21,{{25}^2}}}{{100}} - 20,{015^2} \approx 0,28\) Độ lệch chuẩn: \(\sigma = \sqrt {0,28} \approx 0,53\)
Quảng cáo
|