Giải bài 9.9 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngTính đạo hàm của các hàm số sau: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tính đạo hàm của các hàm số sau: a) \(y = \frac{{{x^2} - x + 1}}{{x + 2}}\) b) \(y = \frac{{1 - {x^2}}}{{{x^2} + 1}}\) Phương pháp giải - Xem chi tiết Giả sử các hàm số \(u = u\left( x \right)\), \(v = v\left( x \right)\) có đạo hàm trên khoảng \(\left( {a;b} \right)\). Khi đó \({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\,\,\left( {v = v\left( x \right) \ne 0} \right)\) Lời giải chi tiết \(\begin{array}{*{20}{l}}{{\rm{\;\;a)\;}}y' = {{\left( {\frac{{{x^2} - x + 1}}{{x + 2}}} \right)}^\prime } = \frac{{\left( {2x - 1} \right)(x + 2) - \left( {{x^2} - x + 1} \right)}}{{{{(x + 2)}^2}}} = \frac{{{x^2} + 4x - 3}}{{{{(x + 2)}^2}}};}&{\rm{\;}}\end{array}\) \({\rm{b)\;}}y' = {\left( {\frac{{1 - {x^2}}}{{{x^2} + 1}}} \right)^\prime } = \frac{{ - 2x({x^2} + 1) - 2x(1 - {x^2})}}{{{{\left( {{x^2} + 1} \right)}^2}}} = - \frac{{4x}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{.}}\)
Quảng cáo
|