Giải bài 9.37 trang 65 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho \(f\left( x \right) = \left( {{x^2} - x} \right){e^{ - x}}\) . Giá trị của \(f''\left( 0 \right)\) là

Quảng cáo

Đề bài

Cho \(f\left( x \right) = \left( {{x^2} - x} \right){e^{ - x}}\) . Giá trị của \(f''\left( 0 \right)\) là

A. \(4\).                                 

B. \( - 4\).                               

C. \(0\).                                 

D. \( - 1\).

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm \({\left( {uv} \right)^\prime } = u'v + v'u\)

Tính \(f'\left( x \right);f''\left( x \right) \Rightarrow f''\left( 0 \right)\)

Lời giải chi tiết

\(f\left( x \right) = \left( {{x^2} - x} \right){e^{ - x}} \Rightarrow f'\left( x \right) = \left( {2x - 1} \right){e^{ - x}} - \left( {{x^2} - x} \right){e^{ - x}} = \left( { - {x^2} + 3x - 1} \right){e^{ - x}}\)

\(f''\left( x \right) = \left( { - 2x + 3} \right){e^{ - x}} - \left( { - {x^2} + 3x - 1} \right){e^{ - x}} = \left( {{x^2} - 5x + 4} \right){e^{ - x}}\)

\(f''(0) = 4\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close