Giải bài 9 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số a) \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) trên đoạn \(\left[ {\frac{1}{3};3} \right]\); b) \(y = f\left( x \right) = {\log _2}\left( {x + 1} \right)\) trên đoạn \(\left[ { - \frac{1}{2};3} \right]\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để tìm giá trị lớn nhất, giá trị nhỏ nhất: + Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\). + Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\). Lời giải chi tiết a) Hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) có cơ số \(\frac{1}{{\sqrt 3 }} < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\). Do đó, \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( {\frac{1}{3}} \right) = {\log _{\frac{1}{{\sqrt 3 }}}}\frac{1}{3} = 2,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( 3 \right) = {\log _{\frac{1}{{\sqrt 3 }}}}3 = - 2\) b) Vì \( - \frac{1}{2} \le x \le 3 \Rightarrow \frac{1}{2} \le x + 1 \le 4\). Hàm số \(y = f\left( x \right) = {\log _2}\left( {x + 1} \right)\) có cơ số \(2 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\). Do đó, \(\mathop {\min }\limits_{x \in \left[ { - \frac{1}{2};3} \right]} y = f\left( { - \frac{1}{2}} \right) = {\log _2}\left( {\frac{{ - 1}}{2} + 1} \right) = - 1,\mathop {\max }\limits_{x \in \left[ { - \frac{1}{2};3} \right]} y = f\left( 3 \right) = {\log _2}\left( {3 + 1} \right) = 2\)
Quảng cáo
|