Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \frac{1}{n}\). Trong các khẳng định sau, khẳng định nào đúng? A. Dãy số \(\left( {{u_n}} \right)\) có \({u_3} = \frac{1}{6}\). B. Dãy số \(\left( {{u_n}} \right)\) là dãy số tăng. C. Dãy số \(\left( {{u_n}} \right)\) là dãy số không tăng không giảm. D. Dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
Xem chi tiếtXét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\), biết a) \({u_n} = \frac{{2n + 9}}{{n + 3}}\); b) \({u_n} = \frac{1}{{\sqrt {2\;024 + n} }}\); c) \({u_n} = \frac{{n!}}{{{2^n}}}\).
Xem chi tiếtMột tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành cấp số cộng. Tính độ dài các cạnh của tam giác đó.
Xem chi tiếtChu vi của một đa giác là 213cm, số đo các cạnh của nó lập thành cấp số cộng với công sai \(d = 7cm\) và cạnh lớn nhất bằng 53cm. Tính số cạnh của đa giác đó.
Xem chi tiếtCho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\).
Xem chi tiếtXác định số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có \(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right.\).
Xem chi tiếtCho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 12,\frac{{{u_3}}}{{{u_8}}} = 243\). Tìm \({u_9}\).
Xem chi tiếtCho cấp số nhân: \( - \frac{1}{5};a; - \frac{1}{{125}}\). Tính giá trị của a.
Xem chi tiếtMột cấp số nhân có số hạng đầu \({u_1} = 3\), công bội \(q = 2\). Biết \({S_n} = 765\). Tìm n.
Xem chi tiếtMột tháp 10 tầng có diện tích sàn của tầng dưới cùng là \(6\;144{m^2}\). Tính diện tích mặt sàn tầng trên cùng, biết rằng diện tích mặt sàn mỗi tầng bằng nửa diện tích mặt sàn tầng ngay bên dưới.
Xem chi tiết