Giải bài 6 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 12,\frac{{{u_3}}}{{{u_8}}} = 243\). Tìm \({u_9}\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 12,\frac{{{u_3}}}{{{u_8}}} = 243\). Tìm \({u_9}\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\). Lời giải chi tiết Ta có: \(\frac{{{u_3}}}{{{u_8}}} = 243 \Rightarrow \frac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = 243 \Rightarrow \frac{1}{{{q^5}}} = {3^5} \Rightarrow q = \frac{1}{3}\). Do đó, \({u_9} = {u_1}.{q^8} = 12.{\left( {\frac{1}{3}} \right)^8} = \frac{4}{{2\;187}}\)
Quảng cáo
|