Bài 6.1, 6.2, 6.3, 6.4 trang 58, 59 SBT toán 9 tập 2

Giải bài 6.1, 6.2, 6.3, 6.4 trang 58, 59 sách bài tập toán 9. Giả sử x1, x2 là hai nghiệm của phương trình a.x^2 + bx + c = 0 (a khác 0)...

Tổng hợp đề thi học kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Bài 6.1

Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\;(a \ne 0).\)

Điều nào sau đây đúng?

A) \(\displaystyle {x_1} + {x_2} = {b \over a},{x_1}{x_2} = {c \over a}\)

B) \(\displaystyle {x_1} + {x_2} =  - {b \over a},{x_1}{x_2} =  - {c \over a}\)

C) \(\displaystyle {x_1} + {x_2} = {b \over a},{x_1}{x_2} =  - {c \over a}\)

D) \(\displaystyle {x_1} + {x_2} =  - {b \over a},{x_1}{x_2} = {c \over a}\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\(x_1,x_2\) là nghiệm của phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1} + {x_2} =  - {b \over a},{x_1}{x_2} = {c \over a}\)

Chọn D.

Bài 6.2

Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \({x^2} + px + q = 0.\) Hãy lập một phương trình bậc hai có hai nghiệm \(x_1+x_2;x_1x_2\)

Phương pháp giải:

Phương trình có hai nghiệm \(x_1;x_2\) có dạng: \(\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = 0\).

Lời giải chi tiết:

Giả sử \(x_1,x_2\) là nghiệm của phương trình: \({x^2} + px + q = 0\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1} + {x_2} =  - {p \over 1} =  - p;{x_1}{x_2} = {q \over 1} = q\)

Phương trình có hai nghiệm là \({x_1} + {x_2}\) và \({x_1}{x_2}\) tức là phương trình có hai nghiệm là \(-p\) và \(q.\)

Hai số \(-p\) và \(q\) là nghiệm của phương trình.

\(\eqalign{
& \left( {x + p} \right)\left( {x - q} \right) = 0 \cr 
& \Leftrightarrow {x^2} - qx + px - pq = 0 \cr 
& \Leftrightarrow {x^2} + \left( {p - q} \right)x - pq = 0 \cr} \)

Phương trình cần tìm là: \({x^2} + \left( {p - q} \right)x - pq = 0\).

Bài 6.3

Dùng định lí Vi-ét, hãy chứng tỏ rằng nếu tam thức \(a{x^2} + bx + c\) có hai nghiệm \(x_1\) và \(x_2\) thì nó phân tích được thành

\(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\)

Áp dụng:

Phân tích các tam thức sau thành tích:

a) \({x^2} - 11x + 30\)

b) \(3{x^2} + 14x + 8\)

c) \(5{x^2} + 8x - 4\)

d) \({x^2} - \left( {1 + 2\sqrt 3 } \right)x - 3 + \sqrt 3 \)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Tam thức bậc hai: \(a{x^2} + bx + c\) có hai nghiệm \(x_1,x_2\) nên phương trình: \(a{x^2} + bx + c = 0\;(a \ne 0)\) có hai nghiệm \(x_1,x_2\)

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1} + {x_2} = - {b \over a};{x_1}{x_2} = {c \over a}\;\;(1) \)

Lại có: \(\displaystyle a{x^2} + bx + c = a\left( {{x^2} + {b \over a}x + {c \over a}} \right)\)   (2) 

Từ (1) và (2) suy ra:

\(\eqalign{
& a{x^2} + bx + c \cr&= a\left[ {{x^2} - \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2}} \right] \cr 
& = a\left[ {{x^2} - {x_1}x - {x_2}x + {x_1}{x_2}} \right] \cr 
& = a\left[ {x\left( {x - {x_1}} \right) - {x_2}\left( {x - {x_1}} \right)} \right] \cr 
& = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) \cr} \)

Áp dụng:

a) 

\(\eqalign{
& {x^2} - 11x + 30 = 0 \cr 
& \Delta = {\left( { - 11} \right)^2} - 4.1.30 = 1 > 0 \cr 
& \sqrt \Delta = \sqrt 1 = 1 \cr 
& {x_1} = {{11 + 1} \over {2.1}} = 6 \cr 
& {x_2} = {{11 - 1} \over {2.1}} = 5 \cr} \)

Ta có: \({x^2} - 11x + 30 = \left( {x - 6} \right)\left( {x -5} \right)\)

b)

\(\eqalign{
& 3{x^2} + 14x + 8 = 0 \cr 
& \Delta ' = {7^2} - 3.8 = 49 - 24 = 25 > 0 \cr 
& \sqrt {\Delta '} = \sqrt {25} = 5 \cr 
& {x_1} = {{ - 7 + 5} \over 3} = - {2 \over 3} \cr 
& {x_2} = {{ - 7 - 5} \over 3} = - 4  \cr} \)

Ta có: \( \displaystyle 3{x^2} + 14x + 8 = 3\left( {x + {2 \over 3}} \right)\left( {x + 4} \right)\)\(\, = \left( {3x + 2} \right)\left( {x + 4} \right)\)

c)

\(\eqalign{
& 5{x^2} + 8x - 4 = 0 \cr 
& \Delta ' = {4^2} - 5.\left( { - 4} \right) = 36 > 0 \cr 
& \sqrt {\Delta '} = \sqrt {36} = 6 \cr 
& {x_1} = {{ - 4 - 6} \over 5} = - 2 \cr 
& {x_2} = {{ - 4 + 6} \over 5} = {2 \over 5} \cr} \)

Ta có: \(\displaystyle 5{x^2} + 8x - 4 = 5\left( {x - {2 \over 5}} \right)\left( {x + 2} \right) \)\(\,\displaystyle = \left( {5x - 2} \right)\left( {x + 2} \right) \).

d) \({x^2} - \left( {1 + 2\sqrt 3 } \right)x - 3 + \sqrt 3 = 0 \)

\(\Delta = {\left[ { - \left( {1 + 2\sqrt 3 } \right)} \right]^2} \)\(\,- 4.1.\left( { - 3 + \sqrt 3 } \right) \)

\( = 1 + 4\sqrt 3 + 12 + 12 - 4\sqrt 3\)\(\, = 25 > 0 \)

\(\sqrt \Delta = \sqrt {25} = 5 \)

\(\displaystyle {x_1} = {{1 + 2\sqrt 3 + 5} \over {2.1}} = 3 + \sqrt 3 \) 

\(\displaystyle {x_2} = {{1 + 2\sqrt 3 - 5} \over {2.1}} = \sqrt 3 - 2 \)

Ta có: \( {x^2} - \left( {1 + 2\sqrt 3 } \right)x - 3 + \sqrt 3 \)\(\,= \left[ {x - \left( {3 + \sqrt 3 } \right)} \right]\left[ {x - \left( {\sqrt 3 - 2} \right)} \right] \) \( = \left( {x - 3 - \sqrt 3 } \right)\left( {x - \sqrt 3 + 2} \right) \).

Bài 6.4

Cho phương trình

\(\left( {2m - 1} \right){x^2} - 2\left( {m + 4} \right)x + 5m + 2\)\(\, = 0\;\displaystyle (m \ne {1 \over 2}).\)

a) Tìm giá trị của \(m\) để phương trình có nghiệm.

b) Khi phương trình có nghiệm \(x_1,x_2\), hãy tính tổng \(S\) và tích \(P\) của hai nghiệm theo \(m.\)

c) Tìm hệ thức giữa \(S\) và \(P\) sao cho trong hệ thức này không có \(m.\)

Phương pháp giải:

Sử dụng:

- Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\) có nghiệm khi và chỉ khi \(\Delta ' \ge 0\).

- Hệ thức Vi-ét:

Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình: \(\left( {2m - 1} \right){x^2} - 2\left( {m + 4} \right)x + 5m + 2 \)\(\,= 0\;(m \ne\displaystyle {1 \over 2})\)             (1)

a) Phương trình có nghiệm khi và chỉ khi \(\Delta '  \ge 0\)

\( \Delta ' = {\left[ { - \left( {m + 4} \right)} \right]^2} \)\(\,- \left( {2m - 1} \right)\left( {5m + 2} \right) \) 

\(= {m^2} + 8m + 16 - 10{m^2} - 4m + 5m \)\(\,+ 2 \)

\(= - 9m^2 + 9m + 18 \)

\(= - 9\left( {{m^2} - m - 2} \right) \)

\(=-9(m^2-2m+m-2)\)

\(=-9[m(m-2)+m-2]\)

\(= - 9\left( {m - 2} \right)\left( {m + 1} \right) \)

\( \Delta ' \ge 0 \Leftrightarrow - 9\left( {m - 2} \right)\left( {m + 1} \right) \ge 0\)

\(\Leftrightarrow \left( {m - 2} \right)\left( {m + 1} \right) \le 0  \)

\( \Leftrightarrow \left\{ {\matrix{
{m - 2 \ge 0} \cr 
{m + 1 \le 0} \cr} } \right.\)  hoặc \(\left\{ {\matrix{{m - 2 \le 0} \cr {m + 1 \ge 0} \cr} } \right.\)

TH1:

\(\left\{ {\matrix{
{m - 2 \ge 0} \cr 
{m + 1 \le 0} \cr
} \Leftrightarrow \left\{ {\matrix{
{m \ge 2} \cr 
{m \le - 1} \cr} } \right.} \right.\) vô nghiệm

TH2:

\(\left\{ {\matrix{
{m - 2 \le 0} \cr 
{m + 1 \ge 0} \cr
} \Leftrightarrow \left\{ {\matrix{
{m \le 2} \cr 
{m \ge - 1} \cr} } \right.} \right.\) \(\Leftrightarrow - 1 \le m \le 2\)

Vậy \(-1 ≤ m ≤ 2\) thì phương trình (1) có nghiệm.

b) Phương trình có hai nghiệm \(x_1,x_2\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1} + {x_2} = {{2\left( {m + 4} \right)} \over {2m - 1}};\) \(\displaystyle{x_1}{x_2} = {{5m + 2} \over {2m - 1}}\)

c) Theo câu b ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2\left( {m + 4} \right)}}{{2m - 1}}\\
{x_1}{x_2} = \dfrac{{5m + 2}}{{2m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2m + 8}}{{2m - 1}}\\
{x_1}{x_2} = \dfrac{{\dfrac{5}{2}.2m - \dfrac{5}{2} + \dfrac{9}{2}}}{{2m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2m - 1 + 9}}{{2m - 1}}\\
{x_1}{x_2} = \dfrac{{\dfrac{5}{2}\left( {2m - 1} \right) + \dfrac{9}{2}}}{{2m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2m - 1}}{{2m - 1}} + \dfrac{9}{{2m - 1}}\\
{x_1}{x_2} = \dfrac{{\dfrac{5}{2}\left( {2m - 1} \right)}}{{2m - 1}} + \dfrac{{\dfrac{9}{2}}}{{2m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = 1 + 9.\dfrac{1}{{2m - 1}}\\
{x_1}{x_2} = \dfrac{5}{2} + \dfrac{9}{2}.\dfrac{1}{{2m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = 1 + 9.\dfrac{1}{{2m - 1}}\\
2{x_1}{x_2} = 5 + 9.\dfrac{1}{{2m - 1}}
\end{array} \right.\\
\Rightarrow 2{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) \\= 5 + 9.\dfrac{1}{{2m - 1}} - \left( {1 + 9.\dfrac{1}{{2m - 1}}} \right)\\
\Leftrightarrow 2{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) = 4
\end{array}\) 

Vậy \(  2{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) = 4  \) là biểu thức không phụ thuộc vào \(m\) cần tìm.

Loigiaihay.com

  • Bài 44 trang 58 SBT toán 9 tập 2

    Giải bài 44 trang 58 sách bài tập toán 9. Cho phương trình x^2 - 6x + m = 0. Tính giá trị của m, biết rằng phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện x1 – x2 = 4.

  • Bài 43 trang 58 SBT toán 9 tập 2

    Giải bài 43 trang 58 sách bài tập toán 9. Cho phương trình x^2 + px - 5 = 0 có nghiệm là x1, x2.

  • Bài 42 trang 58 SBT toán 9 tập 2

    Giải bài 42 trang 58 sách bài tập toán 9. Lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau: a) 3 và 5

  • Bài 41 trang 58 SBT toán 9 tập 2

    Giải bài 41 trang 58 sách bài tập toán 9. Tìm hai số u và v trong mỗi trường hợp sau: a) u + v = 14; uv = 40

  • Bài 40 trang 57 SBT toán 9 tập 2

    Giải bài 40 trang 57 sách bài tập toán 9. Dùng hệ thức Vi-ét để tìm nghiệm x2 của phương trình rồi tìm giá trị của m trong mỗi trường hợp sau ...

Quảng cáo

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

close