Giải bài 5 trang 61 sách bài tập toán 12 - Chân trời sáng tạoCho đường thẳng (d) có phương trình tham số: (left{ begin{array}{l}x = 1 + 4t\y = 6t\z = - 2 + 2tend{array} right.). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)? A. (frac{{x + 1}}{4} = frac{y}{6} = frac{{z - 2}}{2}). B. (frac{{x - 5}}{2} = frac{{y - 6}}{3} = frac{z}{1}). C. (frac{{x + 1}}{2} = frac{y}{3} = frac{{z - 2}}{{ - 2}}). D. (frac{{x - 1}}{4} = frac{y}{6} = frac{{z + 2}}{2}). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Cho đường thẳng \(d\) có phương trình tham số: \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 6t\\z = - 2 + 2t\end{array} \right.\). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d\)? A. \(\frac{{x + 1}}{4} = \frac{y}{6} = \frac{{z - 2}}{2}\). B. \(\frac{{x - 5}}{2} = \frac{{y - 6}}{3} = \frac{z}{1}\). C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\). D. \(\frac{{x - 1}}{4} = \frac{y}{6} = \frac{{z + 2}}{2}\). Phương pháp giải - Xem chi tiết Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\). Lời giải chi tiết Đường thẳng \(d\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 6t\\z = - 2 + 2t\end{array} \right.\) đi qua điểm \(M\left( {1;0; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {4;6;2} \right)\). Phương trình chính tắc của \(d\) là: \(\frac{{x - 1}}{4} = \frac{y}{6} = \frac{{z + 2}}{2}\). Chọn D.
Quảng cáo
|