Bài 4.59 trang 174 SBT đại số và giải tích 11Giải bài 4.59 trang 174 sách bài tập đại số và giải tích 11. Chứng minh rằng phương trình :... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Chứng minh rằng phương trình: LG a \({x^5} - 5x - 1 = 0\) có ít nhất ba nghiệm; Phương pháp giải: Hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\left( {a;b} \right)\). Nếu \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\). Lời giải chi tiết: Xét hàm số \(f\left( x \right) = {x^5} - 5x - 1\) trên các đoạn \(\left[ { - 2; - 1} \right],\left[ { - 1;0} \right],\left[ {0;3} \right]\) Hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng \(\left( { - 2; - 1} \right),\left( { - 1;0} \right),\left( {0;3} \right)\) Ta có: \(\begin{array}{l}f\left( { - 2} \right) = - 23\\f\left( { - 1} \right) = 3\\f\left( 0 \right) = - 1\\f\left( 3 \right) = 227\end{array}\) Vì \(f\left( { - 2} \right).f\left( { - 1} \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 2; - 1} \right)\) \(f\left( { - 1} \right).f\left( 0 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 1;0} \right)\) \(f\left( 0 \right).f\left( 3 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {0;3} \right)\) Vậy phương trình \(f\left( x \right) = 0\) có ít nhất 3 nghiệm. LG b \(m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3 = 0\) luôn có ít nhất hai nghiệm với mọi giá trị của tham số m ; Lời giải chi tiết: Xét hàm số \(f\left( x \right) = m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3\) trên các đoạn \(\left[ { - 2;1} \right],\left[ {1;2} \right]\) Hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng \(\left( { - 2;1} \right),\left( {1;2} \right)\) Ta có: \(\begin{array}{l}f\left( { - 2} \right) = 13\\f\left( 1 \right) = - 2\\f\left( 2 \right) = 13\end{array}\) Vì \(f\left( { - 2} \right).f\left( 1 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 2;1} \right)\) \(f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {1;2} \right)\) Vậy phương trình \(f\left( x \right) = 0\) có ít nhất 2 nghiệm với mọi \(m\). LG c \({x^3} - 3x = m\) có ít nhất hai nghiệm với mọi giá trị của \(m \in \left( { - 2;2} \right)\) Lời giải chi tiết: Xét hàm số \(f\left( x \right) = {x^3} - 3x - m\) trên các đoạn \(\left[ { - 1;1} \right],\left[ {1;2} \right]\) Hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng \(\left( { - 1;1} \right),\left( {1;2} \right)\) Ta có: \(f\left( { - 1} \right) = 2 - m > 0,\) \(\forall m \in \left( { - 2;2} \right)\) \(f\left( 1 \right) = - 2 - m < 0,\) \(\forall m \in \left( { - 2;2} \right)\) \(f\left( 2 \right) = 2 - m > 0,\) \(\forall m \in \left( { - 2;2} \right)\) Do đó: \(f\left( { - 1} \right).f\left( 1 \right) < 0,\) \(\forall m \in \left( { - 2;2} \right)\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 1;1} \right)\) \(f\left( 1 \right).f\left( 2 \right) < 0,\) \(\forall m \in \left( { - 2;2} \right)\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {1;2} \right)\) Vậy phương trình \(f\left( x \right) = 0\) có ít nhất 2 nghiệm với mọi \(m\). Loigiaihay.com
Quảng cáo
|