Giải bài 4.45 trang 21 sách bài tập toán 12 - Kết nối tri thứcCho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng \(x = 0,x = 1\). Tính thể tích khối tròn xoay khi quay \(D\) quanh trục hoành. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Cho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng \(x = 0,x = 1\). Tính thể tích khối tròn xoay khi quay \(D\) quanh trục hoành. Phương pháp giải - Xem chi tiết Áp dụng công thức tính thể tích \(V = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } \right)}^2}dx} \). Lời giải chi tiết Thể tích khối tròn xoay khi quay \(D\) quanh trục hoành là \(V = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } \right)}^2}dx} = \pi \int\limits_0^1 {\left( {{x^2} + 1} \right)dx} = \pi \left. {\left( {\frac{{{x^3}}}{3} + x} \right)} \right|_0^1 = \frac{{4\pi }}{3}\).
Quảng cáo
|