Giải bài 4.35 trang 19 sách bài tập toán 12 - Kết nối tri thức

Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right)) liên tục trên (mathbb{R}), (fleft( 0 right) = 1) và (intlimits_0^2 {f'left( x right)dx} = 4). Khi đó giá trị của (fleft( 2 right)) bằng A. 5. B. -3. C. 6. D. 8.

Quảng cáo

Đề bài

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\), \(f\left( 0 \right) = 1\) và \(\int\limits_0^2 {f'\left( x \right)dx}  = 4\). Khi đó giá trị của \(f\left( 2 \right)\) bằng

A. 5.

B. -3.

C. 6.

D. 8.

Phương pháp giải - Xem chi tiết

Từ \(\int\limits_0^2 {f'\left( x \right)dx}  = f\left( 2 \right) - f\left( 0 \right)\) ta tìm được \(f\left( 2 \right)\)

Lời giải chi tiết

Ta có \(\int\limits_0^2 {f'\left( x \right)dx}  = f\left( 2 \right) - f\left( 0 \right) \Leftrightarrow f\left( 2 \right) = \int\limits_0^2 {f'\left( x \right)dx}  + f\left( 0 \right) \Leftrightarrow f\left( 2 \right) = 4 + 1 = 5\).

Vậy ta chọn đáp án A.

  • Giải bài 4.36 trang 19 sách bài tập toán 12 - Kết nối tri thức

    Giá trị trung bình của hàm (fleft( x right)) trên (left[ {a;b} right]) được tính theo công thức (m = frac{1}{{b - a}}intlimits_a^b {fleft( x right)dx} ). Khi đó giá trị trung bình của hàm (fleft( x right) = {x^2} + 2x) trên đoạn (left[ {0;3} right]) là A. (frac{8}{3}). B. 18. C. 6. D. 5.

  • Giải bài 4.37 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = fleft( x right)) liên tục trên (left[ {a;b} right]) và (fleft( x right) le 0,forall x in left[ {a;b} right]). Diện tích hình phẳng giới hạn bởi đồ thị hàm số (y = fleft( x right)), trục (Ox) và hai đường thẳng (x = a,x = b) được tính bằng công thức A. (S = intlimits_a^b {fleft( x right)dx} ). B. (S = - intlimits_a^b {fleft( x right)dx} ). C. (S = pi intlimits_a^b {fleft( x right)dx} ). D. (S = pi intlimits_a^b {{{

  • Giải bài 4.38 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Một đất nước tiêu thụ dầu theo tốc độ xác định bởi (rleft( t right) = 20 cdot {e^{0,2t}}) tỉ thùng mỗi năm, trong đó t là thời gian tính theo năm, (0 le t le 10). Trong khoảng 10 năm kể trên, nước đó đã tiêu thụ lượng dầu là A. (rleft( {10} right)). B. (rleft( {10} right) - rleft( 0 right)). C. (intlimits_0^{10} {r'left( t right)dt} ). D. (intlimits_0^{10} {rleft( t right)dt} ).

  • Giải bài 4.40 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng (Nleft( t right)) con. Biết rằng tốc độ phát triển của quần thể đó là (N'left( t right) = frac{{8000}}{t}) và sau ngày thứ nhất (left( {t = 1} right)) có 250 000 con. Sau 6 ngày (left( {t = 6} right)), số lượng của quần thể vi khuẩn là A. 353 584 con. B. 234 167 con. C. 288 959 con. D. 264 334 con.

  • Giải bài 4.41 trang 21 sách bài tập toán 12 - Kết nối tri thức

    Tìm họ tất cả các nguyên hàm của các hàm số sau: a) (y = {sin ^2}frac{x}{2}); b) (y = {e^{2x}} - 2{x^5} + 5).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close