📚Học hết sức – Giá hết hồn!
Giải bài 4.26 trang 61 sách bài tập toán 7 - Kết nối tri thức với cuộc sốngCho các điểm A, B, C, D, E như Hình 4.26, biết rằng Tổng hợp đề thi giữa kì 2 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN... Quảng cáo
Đề bài Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, ^BAE=^DCE. Chứng minh rằng: a) E là trung điểm của các đoạn thẳng AC và BD. b) ΔACD=ΔCAB c) AD song song với BC. Phương pháp giải - Xem chi tiết a) Chứng minh ΔABE=ΔCDE(g−c−g) b) Chứng minh ΔACD=ΔCAB(c–g–c) c) Chỉ ra 2 góc ở vị trí so le trong bằng nhau. Lời giải chi tiết a) Áp dụng định lí tổng ba góc trong tam giác ABE, ta có: ˆB+ˆA+^AEB=1800 Áp dụng định lí tổng ba góc trong tam giác DCE, ta có: ˆD+ˆC+^DEC=1800 Mà ^AEB=^DEC (2 góc đối đỉnh); ˆA=ˆC ⇒ˆB=ˆD Xét ΔABE và ΔCDE có: AB = CD (gt) ˆA=ˆC(gt)ˆB=ˆD(cmt)⇒ΔABE=ΔCDE(g−c−g) ⇒{AE=CEBE=DE (cặp cạnh tương ứng) Vậy E là trung điểm của các đoạn thẳng AC và BD. b) Xét ΔACD và ΔCAB có: AC: Cạnh chung ^ACD=^CAB(gt) CD = AB (gt) ⇒ΔACD=ΔCAB(c−g−c) c) Ta có: ΔACD=ΔCAB(cmt)⇒^CAD=^ACB(2 góc tương ứng) Mà 2 góc ở vị trí so le trong ⇒AD//BC (Dấu hiệu nhận biết 2 đường thẳng song song).
Quảng cáo
|