Giải bài 4 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải các bất phương trình sau:

Quảng cáo

Đề bài

Giải các bất phương trình sau:

a) \({\log _3}\left( {x + 4} \right) < 2\);

b) \({\log _{\frac{1}{2}}}x \ge 4\);

c) \({\log _{0,25}}\left( {x - 1} \right) \le  - 1\);

d) \({\log _5}\left( {{x^2} - 24x} \right) \ge 2\);

e) \(2{\log _{\frac{1}{4}}}\left( {x + 1} \right) \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right)\);

g) \(2{\log _3}\left( {x + 1} \right) \le 1 + {\log _3}\left( {x + 7} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giải bất phương trình lôgarit để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(a > 1\)

\(0 < a < 1\)

\({\log _a}x > b\)

\(x > {a^b}\)

\(0 < x < {a^b}\)

\({\log _a}x \ge b\)

\(x \ge {a^b}\)

\(0 < x \le {a^b}\)

\({\log _a}x < b\)

\(0 < x < {a^b}\)

\(x > {a^b}\)

\({\log _a}x \le b\)

\(0 < x \le {a^b}\)

\(x \ge {a^b}\)

Chú ý:

+ Nếu \(a > 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}v\left( x \right) > 0\\u\left( x \right) > v\left( x \right)\end{array} \right.\)

+ Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\)

Lời giải chi tiết

a) Điều kiện: \(x + 4 > 0 \) \( \Leftrightarrow x >  - 4\)

\({\log _3}\left( {x + 4} \right) < 2 \) \( \Leftrightarrow x + 4 < {3^2} \) \( \Leftrightarrow x < 5\)

Kết hợp với ĐK ta có: \( - 4 < x < 5\)

b) Điều kiện: \(x > 0\)

\({\log _{\frac{1}{2}}}x \ge 4 \) \( \Leftrightarrow x \le {\left( {\frac{1}{2}} \right)^4} \) \( \Leftrightarrow x \le \frac{1}{{16}}\)

Kết hợp với điều kiện ta có: \(0 < x \le \frac{1}{{16}}\).

c) Điều kiện: \(x - 1 > 0 \) \( \Leftrightarrow x > 1\)

\({\log _{0,25}}\left( {x - 1} \right) \le  - 1 \) \( \Leftrightarrow x - 1 \ge 0,{25^{ - 1}} \) \( \Leftrightarrow x - 1 \ge 4 \) \( \Leftrightarrow x \ge 5\)

Kết hợp với điều kiện ta có: \(x \ge 5\).

Vậy nghiệm của bất phương trình là: \(x \ge 5\)

d) Điều kiện: \({x^2} - 24x > 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x < 0\\x > 24\end{array} \right.\)

\({\log _5}\left( {{x^2} - 24x} \right) \ge 2 \) \( \Leftrightarrow {x^2} - 24x \ge {5^2} \) \( \Leftrightarrow {x^2} - 24x - 25 \ge 0 \) \( \Leftrightarrow \left( {x + 1} \right)\left( {x - 25} \right) \ge 0\)\( \) \( \Leftrightarrow \left[ \begin{array}{l}x \ge 25\\x \le  - 1\end{array} \right.\)

Kết hợp với điều kiện ta có: \(\left[ \begin{array}{l}x \ge 25\\x \le  - 1\end{array} \right.\)

Vậy nghiệm của bất phương trình là: \(x \ge 25;x \le  - 1\)

e) \(2{\log _{\frac{1}{4}}}\left( {x + 1} \right) \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right) \) \( \Leftrightarrow \left\{ \begin{array}{l}x >  - 1\left( {**} \right)\\{\log _{\frac{1}{4}}}{\left( {x + 1} \right)^2} \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right)\left( * \right)\end{array} \right.\)

(*)\( \) \( \Leftrightarrow {\left( {x + 1} \right)^2} \le 3x + 7 \) \( \Leftrightarrow {x^2} + 2x + 1 - 3x - 7 \le 0 \) \( \Leftrightarrow {x^2} - x - 6 \le 0\)

\( \) \( \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) \le 0 \) \( \Leftrightarrow  - 2 \le x \le 3\)

Kết hợp với (**) ta có: \( - 1 < x \le 3\)

Vậy nghiệm của bất phương trình là: \( - 1 < x \le 3\)

g) Điều kiện: \(x >  - 1\)

\(2{\log _3}\left( {x + 1} \right) \le 1 + {\log _3}\left( {x + 7} \right) \) \( \Leftrightarrow {\log _3}{\left( {x + 1} \right)^2} \le {\log _3}3 + {\log _3}\left( {x + 7} \right)\)

\( \) \( \Leftrightarrow {\log _3}{\left( {x + 1} \right)^2} \le {\log _3}3\left( {x + 7} \right) \) \( \Leftrightarrow {x^2} + 2x + 1 \le 3x + 21\)

\( \) \( \Leftrightarrow {x^2} - x - 20 \le 0 \) \( \Leftrightarrow \left( {x + 4} \right)\left( {x - 5} \right) \le 0 \) \( \Leftrightarrow  - 4 \le x \le 5\)

Kết hợp với điều kiện ta có: \( - 1 < x \le 5\)

Vậy nghiệm của bất phương trình là: \( - 1 < x \le 5\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close