Giải bài 38 trang 67 sách bài tập toán 9 - Cánh diều tập 1

Cho biểu thức \(M = \frac{1}{{2\sqrt x - 2}} - \frac{1}{{2\sqrt x + 2}} + \frac{{\sqrt x }}{{1 - x}}\) với \(x > 0\). a) Rút gọn biểu thức M. b) Tính giá trị biểu thức M tại \(x = \frac{4}{9}.\) c) Tìm giá trị của x để \(\left| M \right| = \frac{1}{3}\).

Quảng cáo

Đề bài

Cho biểu thức \(M = \frac{1}{{2\sqrt x  - 2}} - \frac{1}{{2\sqrt x  + 2}} + \frac{{\sqrt x }}{{1 - x}}\) với \(x > 0\).

a) Rút gọn biểu thức M.

b) Tính giá trị biểu thức M tại \(x = \frac{4}{9}.\)

c) Tìm giá trị của x để \(\left| M \right| = \frac{1}{3}\).

Phương pháp giải - Xem chi tiết

a) Quy đồng mẫu thức các phân thức.

b) Thay \(x = \frac{4}{9}\) vào biểu thức vừa rút gọn.

c) Thay biểu thức M vừa rút gọn vào phương trình \(\left| M \right| = \frac{1}{3}\), và giải phương trình chứa dấu giá trị tuyệt đối.

Lời giải chi tiết

a) Với \(x > 0\), ta có:

 \(\begin{array}{l}M = \frac{1}{{2\sqrt x  - 2}} - \frac{1}{{2\sqrt x  + 2}} + \frac{{\sqrt x }}{{1 - x}}\\ = \frac{1}{{2\left( {\sqrt x  - 1} \right)}} - \frac{1}{{2\left( {\sqrt x  + 1} \right)}} + \frac{{\sqrt x }}{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\ = \frac{{\sqrt x  + 1}}{{2\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}} - \frac{{\left( {1 - \sqrt x } \right)}}{{2\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}} + \frac{{2\sqrt x }}{{2\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\ = \frac{{\sqrt x  + 1 - \left( {\sqrt x  - 1} \right) - 2\sqrt x }}{{2\left( {\sqrt x  - 1} \right)\left( {1 + \sqrt x } \right)}}\\ = \frac{{2 - 2\sqrt x }}{{2\left( {\sqrt x  - 1} \right)\left( {1 + \sqrt x } \right)}}\\ = \frac{{2\left( {1 - \sqrt x } \right)}}{{2\left( {\sqrt x  - 1} \right)\left( {1 + \sqrt x } \right)}}\\ =  - \frac{1}{{1 + \sqrt x }}\end{array}\)

Vậy \(M =  - \frac{1}{{1 + \sqrt x }}\).

b) Thay \(x = \frac{4}{9}\) (thỏa mãn điều kiện) vào M, ta được:

\(M =  - \frac{1}{{1 + \sqrt x }} =  - \frac{1}{{1 + \sqrt {\frac{4}{9}} }} =  - \frac{1}{{1 + \frac{2}{3}}} = \frac{{ - 3}}{5}\)

Vậy \(M = \frac{{ - 3}}{5}\) với \(x = \frac{4}{9}\).

a)   Để \(\left| M \right| = \frac{1}{3}\) thì \(\left| { - \frac{1}{{1 + \sqrt x }}} \right| = \frac{1}{3}\)

Ta xét 2 trường hợp sau:

TH1: \( - \frac{1}{{1 + \sqrt x }} = \frac{1}{3}\)

\(\begin{array}{l} - \frac{1}{{1 + \sqrt x }} = \frac{1}{3}\\1 + \sqrt x  =  - 3\end{array}\)

\(\sqrt x  =  - 4\) (vô lý)

TH2:

 \(\begin{array}{l} - \frac{1}{{1 + \sqrt x }} =  - \frac{1}{3}\\\frac{1}{{1 + \sqrt x }} = \frac{1}{3}\\1 + \sqrt x  = 3\\\sqrt x  = 2\\x = 4(TMĐK)\end{array}\)

Vậy \(x = 4\) là giá trị cần tìm.

  • Giải bài 39 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(N = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right).\frac{{x + \sqrt x }}{{\sqrt x }}\) với \(x > 0\). a) Rút gọn biểu thức N. b) Tìm giá trị nhỏ nhất của N.

  • Giải bài 40 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(P = \frac{2}{{\sqrt x - 1}} + \frac{2}{{\sqrt x + 1}} - \frac{{5 - \sqrt x }}{{x - 1}}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức P. b) Tìm giá trị của P tại \(x = 1\). c) Tìm giá trị của \(x\) để P nguyên.

  • Giải bài 41 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Tìm x, biết: a) (frac{1}{2}sqrt x - frac{3}{2}sqrt {9x} + 24sqrt {frac{x}{{64}}} = - 17) với (x ge 0) b) (sqrt {frac{x}{5}} = 4) với (x ge 0) c) (sqrt {25{x^2}} = 10) d) (sqrt {{{left( {2x - 1} right)}^2}} = 3) e) (2 - sqrt[3]{{5 - x}} = 0)

  • Giải bài 37 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức: \(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {24} }} + \frac{1}{{\sqrt {25} }}.\) Chứng minh \(C > \frac{{24}}{5}.\) b) Cho biểu thức \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\) với \(y > 0,y \ne 1.\) Chứng minh \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)

  • Giải bài 36 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức \(A = \frac{1}{{3 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }} + \frac{1}{{\sqrt 5 - 2}}\) Chứng minh rằng \(A = 5\). b) Cho biểu thức \(B = \frac{1}{{\sqrt {2 + \sqrt 3 } }} + \frac{1}{{\sqrt {2 - \sqrt 3 } }}\). Chứng minh rằng \(B = \sqrt 6 \).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close