Cho tứ giác ABCD nội tiếp đường tròn (O), hai tia AB, DC cắt nhau tại M và (widehat {BAD} = {70^o}). Khi đó số đo góc BCM là: A. ({80^o}) B. ({70^o}) C. ({110^o}) D. ({100^o})
Xem chi tiếtCho hình bình hành ABCD. Đường tròn đi qua ba điểm A, B, C cắt cạnh CD ở P (P khác C và D). Tìm phát biểu sai: A. AP = AD B. Tứ giác ABCP là hình thang cân C. (widehat {APD} = widehat {ABC}) D. (widehat {PCB} + widehat {BAP} < {180^o})
Xem chi tiếtCho tam giác ABC có BC = 10 và (widehat {BAC} = {30^o}). Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Xem chi tiếtCho tứ giác ABCD có (widehat C + widehat D = {90^o}). Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn. Tìm tâm đường tròn đó.
Xem chi tiếtCho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và (frac{{AB}}{{AC}} = frac{3}{4}). Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.
Xem chi tiếtĐường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với BI. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh: a) F, E, K thẳng hàng b) K, N, M thẳng hàng.
Xem chi tiếtCho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh: a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp. b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.
Xem chi tiếtCho lục giác đều ABCDEF cạnh bằng a. a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn. Tính theo a bán kính của đường tròn đó. b) Chứng minh các tam giác ACE, BFD là các tam giác đều. Tính theo a bán kính đường tròn nội tiếp tương ứng của tam giác đó.
Xem chi tiếtCho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho MA = (Rsqrt 3 ) a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB. b) Tính chu vi tam giác MAB. c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.
Xem chi tiết