Quan sát Hình 6 và kể tên các đa giác có trong hình đó.
Xem chi tiếtCho tam giác ABC và D là một điểm nằm trong tam giác. Kẻ DE song song với AB (E thuộc cạnh AC). Kẻ DF song song với BC (F thuộc cạnh AC). a) Trong nhóm các điểm B, D, F, C và nhóm các điểm A, B, C, D, nhóm các điểm nào là 4 đỉnh của một tứ giác lồi? Vì sao? b) Các điểm A, B, C, D, E có phải là các đỉnh của một ngũ giác lồi không? Vì sao?
Xem chi tiếtHãy vẽ một số đa giác (lồi) mà các đỉnh là một số điểm trong các điểm đã cho ở Hình 7.
Xem chi tiếtCho hình chữ nhật MNPQ và ngũ giác ABCDE trên lưới ô vuông như Hình 8, với cạnh của mỗi ô vuông nhỏ là 1 cm. Tính tỉ số diện tích ngũ giác ABCDE và diện tích hình chữ nhật MNPQ (làm tròn đến hàng phần mười).
Xem chi tiếtCho ngũ giác ABCDE. Chứng minh: AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.
Xem chi tiếtCho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho (frac{{MA'}}{{MA}} = frac{{MB'}}{{MB}} = frac{1}{3},frac{{CC'}}{{MC}} = frac{{DD'}}{{MD}} = frac{2}{3},frac{{ME'}}{{E'E}} = frac{1}{2}). Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.
Xem chi tiếtCho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng: a) Các tam giác AEN và CMB là các tam giác cân; b) AN là phân giác của góc EAM; c) AB.BC = BM.AC.
Xem chi tiếtỞ Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.
Xem chi tiếtNgười ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau: – Trên đường tròn (O; R), lấy điểm A tuỳ ý; – Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C; – Vẽ một phần đường tròn (C; R) cắt (O; R) tại E (khác A); – Vẽ một phần đường tròn (E; R) cắt (O; R) tại F (khác C); – Vẽ một phần đường tròn (F; R) cắt (O; R) tại D (khác E). Nối A với B, B với D, D với F, F với E, E với C, C với A, ta được lục giác ABDFEC. Chứng minh: a) Lục giác ABDFEC là lục giác đều; b) AF, BE, CD l
Xem chi tiếtCho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.
Xem chi tiết