Bài 3.29 trang 174 SBT giải tích 12

Giải bài 3.29 trang 174 sách bài tập giải tích 12. Đối với tích phân...

Quảng cáo

Đề bài

Đối với tích phân \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan x}}{{{{\cos }^2}x}}dx} \), thực hiện đổi biến số \(t = \tan x\) ta được:

A. \(\int\limits_0^{\dfrac{\pi }{4}} {tdt} \)                 B. \(\int\limits_{ - 1}^0 {tdt} \)

C. \(\int\limits_0^1 {tdt} \)                   D. \( - \int\limits_0^1 {tdt} \)

Phương pháp giải - Xem chi tiết

Tính \(dt\) và đổi cận suy ra tích phân mới.

Lời giải chi tiết

Đặt \(t = \tan x\)\( \Rightarrow dt = \dfrac{1}{{{{\cos }^2}x}}dx\).

Đổi cận \(x = 0 \Rightarrow t = 0,\) \(x = \dfrac{\pi }{4} \Rightarrow t = 1\).

Khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan x}}{{{{\cos }^2}x}}dx}  = \int\limits_0^1 {tdt} \).

Chọn C.

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close