Bài 3.26 trang 173 SBT giải tích 12Giải bài 3.26 trang 173 sách bài tập giải tích 12. Tích phân |x - x^3| bằng... Quảng cáo
Đề bài \(\int\limits_{ - 1}^1 {\left| {x - {x^3}} \right|dx} \) bằng A. \(\dfrac{1}{2}\) B. \(2\) C. \( - 1\) D. \(0\) Phương pháp giải - Xem chi tiết Phá dấu giá trị tuyệt đối và tính tích phân. Lời giải chi tiết Ta thấy, với \(0 < x < 1\) thì \(x - {x^3} > 0\). Với \( - 1 < x < 0\) thì \(x - {x^3} < 0\). \( \Rightarrow \int\limits_{ - 1}^1 {\left| {x - {x^3}} \right|dx} \)\( = \int\limits_{ - 1}^0 {\left( { - x + {x^3}} \right)dx} + \int\limits_0^1 {\left( {x - {x^3}} \right)dx} \) \( = \left. {\left( { - \dfrac{{{x^2}}}{2} + \dfrac{{{x^4}}}{4}} \right)} \right|_{ - 1}^0 + \left. {\left( {\dfrac{{{x^2}}}{2} - \dfrac{{{x^4}}}{4}} \right)} \right|_0^1\) \( = \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{4} = \dfrac{1}{2}\). Chọn A. Loigiaihay.com
Quảng cáo
|