Bài 3.18 trang 171 SBT giải tích 12

Giải bài 3.18 trang 171 sách bài tập giải tích 12. Áp dụng phương pháp tính tích phân từng phần, hãy tính các tích phân sau:...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng phương pháp tính tích phân từng phần, hãy tính các tích phân sau:

LG câu a

a) \(\int\limits_0^{\dfrac{\pi }{2}} {x\cos 2xdx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos 2xdx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \cos 2xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \dfrac{{\sin 2x}}{2}\end{array} \right.\)

\( \Rightarrow I = \left. {\dfrac{{x\sin 2x}}{2}} \right|_0^{\dfrac{\pi }{2}} - \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\sin 2xdx} \) \( = \dfrac{1}{2}.\left. {\dfrac{{\cos 2x}}{2}} \right|_0^{\dfrac{\pi }{2}} =  - \dfrac{1}{4} - \dfrac{1}{4} =  - \dfrac{1}{2}\)

LG câu b

b) \(\int\limits_0^{\ln 2} {x{e^{ - 2x}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\ln 2} {x{e^{ - 2x}}dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{ - 2x}}dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \dfrac{{{e^{ - 2x}}}}{2}\end{array} \right.\)

\( \Rightarrow I = \left. { - \dfrac{{x{e^{ - 2x}}}}{2}} \right|_0^{\ln 2} + \dfrac{1}{2}\int\limits_0^{\ln 2} {{e^{ - 2x}}dx} \) \( =  - \dfrac{{\ln 2.{e^{ - 2\ln 2}}}}{2} - \dfrac{1}{2}.\left. {\dfrac{{{e^{ - 2x}}}}{2}} \right|_0^{\ln 2}\) \( =  - \dfrac{{\ln 2}}{8} + \dfrac{3}{{16}}\)

LG câu c

c) \(\int\limits_0^1 {\ln (2x + 1)dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^1 {\ln (2x + 1)dx} \)

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {2x + 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{2}{{2x + 1}}dx\\v = x\end{array} \right.\)

\( \Rightarrow I = \left. {x\ln \left( {2x + 1} \right)} \right|_0^1 - \int\limits_0^1 {\dfrac{{2x}}{{2x + 1}}dx} \) \( = \ln 3 - \int\limits_0^1 {\left( {1 - \dfrac{1}{{2x + 1}}} \right)dx} \) \( = \ln 3 - \left. {\left( {x - \dfrac{{\ln \left( {2x + 1} \right)}}{2}} \right)} \right|_0^1\) \( = \ln 3 - \left( {1 - \dfrac{{\ln 3}}{2}} \right) = \dfrac{3}{2}\ln 3 - 1\)

LG câu d

d) \(\int\limits_2^3 {{\rm{[}}\ln (x - 1) - \ln (x + 1){\rm{]}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_2^3 {\left[ {\ln \left( {x - 1} \right) - \ln \left( {x + 1} \right)} \right]dx} \) \( = \int\limits_2^3 {\ln \left( {x - 1} \right)dx}  - \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \) \( = J - K\) với \(J = \int\limits_2^3 {\ln \left( {x - 1} \right)dx} \) và \(K = \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \).

+) Tính \(J = \int\limits_2^3 {\ln \left( {x - 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x - 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{{x - 1}}\\v = x\end{array} \right.\)

\( \Rightarrow J = \left. {x\ln \left( {x - 1} \right)} \right|_2^3 - \int\limits_2^3 {\dfrac{x}{{x - 1}}dx} \) \( = 3\ln 2 - \int\limits_2^3 {\left( {1 + \dfrac{1}{{x - 1}}} \right)dx} \) \( = 3\ln 2 - \left. {\left( {x + \ln \left( {x - 1} \right)} \right)} \right|_2^3\) \( = 3\ln 2 - 3 - \ln 2 + 2\) \( = 2\ln 2 - 1\).

+) Tính \(K = \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x + 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{{x + 1}}\\v = x\end{array} \right.\)

\( \Rightarrow K = \left. {x\ln \left( {x + 1} \right)} \right|_2^3 - \int\limits_2^3 {\dfrac{x}{{x + 1}}dx} \) \( = 3\ln 4 - 2\ln 3 - \int\limits_2^3 {\left( {1 - \dfrac{1}{{x + 1}}} \right)dx} \) \( = 6\ln 2 - 2\ln 3 - \left. {\left( {x - \ln \left( {x + 1} \right)} \right)} \right|_2^3\) \( = 6\ln 2 - 2\ln 3 - 3 + \ln 4 + 2 - \ln 3\) \( = 8\ln 2 - 3\ln 3 - 1\).

\( \Rightarrow I = J - K\) \( = 2\ln 2 - 1 - \left( {8\ln 2 - 3\ln 3 - 1} \right)\) \( = 3\ln 3 - 6\ln 2\)

LG câu e

e) \(\int\limits_{\dfrac{1}{2}}^2 {\left( {1 + x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_{\dfrac{1}{2}}^2 {\left( {1 + x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)\( = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx + \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \) \( = J + K\) với \(J = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx\) và \(K = \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)

+) Tính \(J = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx\)

Đặt \(\left\{ \begin{array}{l}u = {e^{x + \dfrac{1}{x}}}\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 - \dfrac{1}{{{x^2}}}} \right)dx\\v = x\end{array} \right.\)

\( \Rightarrow J = \left. {x{e^{x + \dfrac{1}{x}}}} \right|_{\dfrac{1}{2}}^2 - \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \) \( = \left. {x{e^{x + \dfrac{1}{x}}}} \right|_{\dfrac{1}{2}}^2 - K\) \( = 2{e^{\dfrac{5}{2}}} - \dfrac{1}{2}{e^{\dfrac{5}{2}}} - K = \dfrac{3}{2}{e^{\dfrac{5}{2}}} - K\)

Suy ra \(I = J + K\) \( = \dfrac{3}{2}{e^{\dfrac{5}{2}}} - K + K = \dfrac{3}{2}{e^{\dfrac{5}{2}}}\).

LG câu g

g) \(\int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)

Đặt  \(u = x,dv = \cos x{\sin ^2}xdx\) \( \Rightarrow du = dx\). Ta tìm \(v = \int {\cos x{{\sin }^2}xdx} \).

Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)

\( \Rightarrow \int {\cos x{{\sin }^2}xdx}  = \int {{t^2}dt} \) \( = \dfrac{{{t^3}}}{3} + C = \dfrac{{{{\sin }^3}x}}{3} + C\)

Chọn \(v = \dfrac{{{{\sin }^3}x}}{3}\) ta có:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)\( = \left. {\dfrac{{x{{\sin }^3}x}}{3}} \right|_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^3}x}}{3}dx} \) \( = \dfrac{\pi }{6} - \dfrac{1}{3}\int\limits_0^{\dfrac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \) \( = \dfrac{\pi }{6} - \dfrac{1}{3}J\)

Đặt \(\cos x = t \Rightarrow dt =  - \sin xdx\)

\( \Rightarrow J = \int\limits_1^0 {\left( {1 - {t^2}} \right).\left( { - dt} \right)} \) \( = \int\limits_0^1 {\left( {1 - {t^2}} \right)dt} \) \( = \left. {\left( {t - \dfrac{{{t^3}}}{3}} \right)} \right|_0^1 = \dfrac{2}{3}\)

Vậy \(I = \dfrac{\pi }{6} - \dfrac{1}{3}J\) \( = \dfrac{\pi }{6} - \dfrac{1}{3}.\dfrac{2}{3} = \dfrac{\pi }{6} - \dfrac{2}{9}\).

Loigiaihay.com

Quảng cáo
close