Giải bài 31 trang 56 SBT toán 10 - Cánh diều

Giải các bất phương trình bậc hai sau

Quảng cáo

Đề bài

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 8x + 5 > 0\)

b) \( - 2{x^2} - x + 3 \le 0\)

c) \(25{x^2} - 10x + 1 < 0\)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Phương pháp giải - Xem chi tiết

Sử dụng định lý về dấu của tam thức bậc hai

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệp của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về đấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

Lời giải chi tiết

a) \(3{x^2} - 8x + 5 > 0\)

Tam thức bậc hai \(3{x^2} - 8x + 5\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{5}{3}\) và có hệ số \(a = 3 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(3{x^2} - 8x + 5\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(3{x^2} - 8x + 5 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

b) Tam thức bậc hai \( - 2{x^2} - x + 3\) có hai nghiệm \({x_1} =  - \frac{3}{2};{x_2} = 1\) và có hệ số \(a =  - 2 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 2{x^2} - x + 3\) mang dấu “-” là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} - x + 3 \le 0\) là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

c) Tam thức bậc hai \(25{x^2} - 10x + 1\) có nghiệm kép \({x_0} = \frac{1}{5}\) và có hệ số \(a = 25 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy \(25{x^2} - 10x + 1 \ge 0\;\forall x \in \mathbb{R}\). Do đó tập hợp những giá trị của \(x\) sao cho tam thức \(25{x^2} - 10x + 1\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(25{x^2} - 10x + 1 < 0\) là \(\emptyset \)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Tam thức bậc hai \( - 4{x^2} + 5x + 9\) có hai nghiệm \({x_1} =  - 1;{x_2} = \frac{9}{4}\) và có hệ số \(a =  - 4 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 4{x^2} + 5x + 9\) mang dấu “+” là \(\left[ { - 1;\frac{9}{4}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 4{x^2} + 5x + 9 \ge 0\) là \(\left[ { - 1;\frac{9}{4}} \right]\)

  • Giải bài 32 trang 57 SBT toán 10 - Cánh diều

    Tìm giao các tập nghiệm của hai bất phương trình ( - 3{x^2} + 7x + 10 ge 0) và ( - 2{x^2} - 9x + 11 > 0)

  • Giải bài 33 trang 57 SBT toán 10 - Cánh diều

    Tìm \(m\) để phương trình \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm

  • Giải bài 34 trang 57 SBT toán 10 - Cánh diều

    Xét hệ tọa độ \(Oth\) trong mặt phẳng, trong đó trục \(Ot\) biểu thị thời gian \(t\) (tính bằng giây) và trục \(Oh\) biểu thị độ cao \(h\) (tính bằng mét).

  • Giải bài 35 trang 57 SBT toán 10 - Cánh diều

    Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí \(O\left( {0;0} \right)\) theo quỹ đạo là đường parabol \(y = - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao lớn hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

  • Giải bài 30 trang 56 SBT toán 10 - Cánh diều

    Dựa vào đồ thị hàm số bậc hai \(y = f\left( x \right)\) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: \(f\left( x \right) > 0;f\left( x \right) < 0;f\left( x \right) \ge 0;f\left( x \right) \le 0\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close