Giải bài 3 trang 76 sách bài tập toán 12 - Chân trời sáng tạoCho tứ diện \(OABC\) có \(G\left( {3; - 3;6} \right)\) là trọng tâm. Tìm toạ độ điểm \(A\) thoả mãn \(\overrightarrow {AB} = \left( {1;2;3} \right)\) và \(\overrightarrow {AC} = \left( { - 1;4; - 2} \right)\). Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho tứ diện \(OABC\) có \(G\left( {3; - 3;6} \right)\) là trọng tâm. Tìm toạ độ điểm \(A\) thoả mãn \(\overrightarrow {AB} = \left( {1;2;3} \right)\) và \(\overrightarrow {AC} = \left( { - 1;4; - 2} \right)\). Phương pháp giải - Xem chi tiết ‒ Sử dụng biểu thức toạ độ của phép cộng vectơ: Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u + \overrightarrow v = \left( {{x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2}} \right)\). ‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\). Lời giải chi tiết Giả sử \(A\left( {a;b;c} \right)\). \(G\) là trọng tâm của tứ diện \(OABC\)\( \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{O}}} = \overrightarrow 0 \) \(\begin{array}{l} \Leftrightarrow \overrightarrow {GA} + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AC} } \right) + \overrightarrow {G{\rm{O}}} = \overrightarrow 0 \\ \Leftrightarrow 3\overrightarrow {GA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {G{\rm{O}}} = \overrightarrow 0 \\ \Leftrightarrow 3\overrightarrow {GA} = - \left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {GO} } \right)\end{array}\) Ta có \(G\left( {3; - 3;6} \right) \Leftrightarrow \overrightarrow {OG} = \left( {3; - 3;6} \right) \Leftrightarrow \overrightarrow {GO} = \left( { - 3;3; - 6} \right)\) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {GO} = \left( {1 + \left( { - 1} \right) + \left( { - 3} \right);2 + 4 + 3;3 + \left( { - 2} \right) + \left( { - 6} \right)} \right) = \left( { - 3;9; - 5} \right)\) Do đó \(3\overrightarrow {GA} = \left( {3; - 9;5} \right) \Leftrightarrow \overrightarrow {GA} = \left( {1; - 3;\frac{5}{3}} \right)\). Mặt khác \(\overrightarrow {GA} = \left( {a - 3;b + 3;c - 6} \right)\) Khi đó \(\left\{ \begin{array}{l}a - 3 = 1\\b + 3 = - 3\\c - 6 = \frac{5}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = - 6\\c = \frac{{23}}{3}\end{array} \right.\) Vậy \(A\left( {4; - 6;\frac{{23}}{3}} \right)\).
Quảng cáo
|