Đề bài
Tìm số tự nhiên \(n\), biết
a) \(\dfrac{{16}}{{{2^n}}} = 2\)
b) \(\dfrac{{{{\left( { - 3} \right)}^n}}}{{81}} = - 27\)
c) \({8^n}:{2^n} = 4\)
Áp dụng công thức:
\({x^m}.{x^n} = {x^{m + n}}\) (\( x ∈\mathbb Q, m,n ∈\mathbb N\))
\({x^m}:{x^n} = {x^{m - n}}\) (\(x ≠ 0, m ≥ n\))
\({x^n} = {x^m} \Rightarrow n = m\)
Lời giải chi tiết
a)
\(\begin{array}{l}
\dfrac{{16}}{{{2^n}}} = 2\\ \Rightarrow
\dfrac{{{2^4}}}{{{2^n}}} = 2\\ \Rightarrow
{2^{4 - n}} = 2\\ \Rightarrow
4 - n = 1\\ \Rightarrow n=4-1= 3
\end{array}\)
b)
\(\begin{array}{l}
\dfrac{{{{\left( { - 3} \right)}^n}}}{{81}} = - 27\\ \Rightarrow
\dfrac{{{{\left( { - 3} \right)}^n}}}{{{{\left( { - 3} \right)}^4}}} = {\left( { - 3} \right)^3}\\\Rightarrow
{\left( { - 3} \right)^{n - 4}} = {\left( { - 3} \right)^3}\\\Rightarrow
n - 4 = 3\\\Rightarrow n=4+3= 7
\end{array}\)
c)
\(\begin{array}{l}
{8^n}:{2^n} = 4\\ \Rightarrow {(8:2)^n} = 4\\ \Rightarrow
{4^n} = 4\\ \Rightarrow
n = 1
\end{array}\)
Lưu ý
Bài toán trên có thể giải theo cách khác:
\(\begin{array}{l}
a)\,\,\dfrac{{16}}{{{2^n}}} = 2\\
\Rightarrow {2^n}.2 = 16\\
\Rightarrow {2^{n + 1}} = {2^4}\\
\Rightarrow n + 1 = 4\\
\Rightarrow n = 3
\end{array}\)
\(\begin{array}{l}
b)\,\,\dfrac{{{{\left( { - 3} \right)}^n}}}{{81}} = - 27\\
\Rightarrow {\left( { - 3} \right)^n} = 81.\left( { - 27} \right)\\
\Rightarrow {\left( { - 3} \right)^n} = {\left( { - 3} \right)^4}.{\left( { - 3} \right)^3}\\
\Rightarrow {\left( { - 3} \right)^n} = {\left( { - 3} \right)^7}\\
\Rightarrow n = 7
\end{array}\)
\(\begin{array}{l}
c)\,\,{8^n}:{2^n} = 4\\
\Rightarrow {\left( {{2^3}} \right)^n}:{2^n} = {2^2}\\
\Rightarrow {2^{3n}}:{2^n} = {2^2}\\
\Rightarrow {2^{3n - n}} = {2^2}\\
\Rightarrow {2^{2n}} = {2^2}\\
\Rightarrow 2n = 2\\
\Rightarrow n = 2:2 = 1
\end{array}\)
Loigiaihay.com