Bài 24 trang 24 Vở bài tập toán 7 tập 1Giải bài 24 trang 24 VBT toán 7 tập 1. Tìm giá trị của biểu thức sau: a) 4^2.4^3/2^10... Quảng cáo
Đề bài Tìm giá trị của biểu thức sau a) \(\dfrac{4^{2}.4^{3}}{2^{10}}\) b) \(\dfrac{(0,6)^{5}}{(0,2)^{6}}\) c)\(\dfrac{2^{7}. 9^{3}}{6^{5}.8^{2}}\) d) \(\dfrac{6^{3} + 3.6^{2}+ 3^{3}}{-13}\) Phương pháp giải - Xem chi tiết Chú ý các công thức sau: \(\begin{array}{l} \({\left( {{x^n}} \right)^m} = {x^{n.m}}\) Lời giải chi tiết a) \(\dfrac{4^{2}.4^{3}}{2^{10}} = \dfrac{4^{5}}{(2^{2})^{5}}=\dfrac{4^{5}}{4^{5}}= 1\) b) \(\dfrac{(0,6)^{5}}{(0,2)^{6}} = \dfrac{(0,2.3)^{5}}{(0,2)^{6}} = \dfrac{(0,2)^{5}.3^{5}}{(0,2)^{5}.0,2} \) \(= \dfrac{3^{5}}{0,2} = \dfrac{243}{0,2}= 1215\) c) \(\dfrac{{{2^7}{{.9}^3}}}{{{6^5}{{.8}^2}}} = \dfrac{{{2^7}.{{\left( {{3^2}} \right)}^3}}}{{{{\left( {2.3} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} = \dfrac{{{2^7}{{.3}^6}}}{{{2^5}{{.3}^5}{{.2}^6}}} \) \(= \dfrac{{{2^7}{{.3}^6}}}{{{2^{11}}{{.3}^5}}} = \dfrac{3}{{{2^4}}} = \dfrac{3}{{16}}\) \(\eqalign{ Lưu ý Để giải dạng toán này, ta thường đưa các lũy thừa về cùng một cơ số, sau đó áp dụng các công thức nhân, chia hai lũy thừa về cùng cơ số \(4\). Ta cũng có thể đưa các lũy thừa về cùng cơ số \(2\). \(\dfrac{{{4^2}{{.4}^3}}}{{{2^{10}}}} = \dfrac{{{{\left( {{2^2}} \right)}^2}.{{\left( {{2^2}} \right)}^3}}}{{{2^{10}}}} = \dfrac{{{2^4}{{.2}^6}}}{{{2^{10}}}} = \dfrac{{{2^{10}}}}{{{2^{10}}}} = 1\) Ở câu b) ta đã đưa các lũy thừa về cùng cơ số \(0,2\). Ta cũng có thể đưa các lũy thừa về cùng cơ số \(0,6\). \(\dfrac{{{{\left( {0,6} \right)}^5}}}{{{{\left( {0,2} \right)}^6}}} = \dfrac{{{{\left( {0,6} \right)}^5}}}{{{{\left( {\dfrac{{0,6}}{3}} \right)}^6}}} = \dfrac{{{{\left( {0,6} \right)}^5}}}{{\dfrac{{{{\left( {0,6} \right)}^6}}}{{{3^6}}}}} \) \(= \dfrac{{{{\left( {0,6} \right)}^5}{{.3}^6}}}{{{{\left( {0,6} \right)}^6}}} = \dfrac{{{3^6}}}{{0,6}} = \dfrac{{729}}{{0,6}} = 1215\). Loigiaihay.com
Quảng cáo
|