Bài 2.42 trang 65 SBT hình học 12

Giải bài 2.42 trang 65 sách bài tập hình học 12. Cho mặt cầu S(O;R) và mặt phẳng...

Quảng cáo

Đề bài

Cho mặt cầu \(S\left( {O;R} \right)\) và mặt phẳng \(\left( \alpha  \right)\). Gọi \(d\) là khoảng cách từ \(O\) tới \(\left( \alpha  \right)\). Khi \(d < R\) thì mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính bằng:

A. \(\sqrt {{R^2} + {d^2}} \)             B. \(\sqrt {{R^2} - {d^2}} \)

C. \(\sqrt {Rd} \)                      D. \(\sqrt {{R^2} - 2{d^2}} \)

Phương pháp giải - Xem chi tiết

Sử dụng định lý Pi – ta – go tính bán kính.

Lời giải chi tiết

Gọi H là hình chiếu của O lên mp\(\left( \alpha  \right)\) và A là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O;R).

Tam giác \(OHA\) vuông tại \(H\) nên \(r = HA = \sqrt {O{A^2} - O{H^2}} \) \( = \sqrt {{R^2} - {d^2}} \).

Chọn B.

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close