Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạoTìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{x - 5}}{{2{rm{x}} + 1}}); b) (y = frac{{2{rm{x}}}}{{x - 3}}); c) (y = - frac{6}{{3{rm{x}} + 2}}). Quảng cáo
Đề bài Tìm các tiệm cận của đồ thị hàm số sau: a) \(y = \frac{{x - 5}}{{2{\rm{x}} + 1}}\); b) \(y = \frac{{2{\rm{x}}}}{{x - 3}}\); c) \(y = - \frac{6}{{3{\rm{x}} + 2}}\). Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \) thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = - \infty \) Vậy \(x = - \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2}\) Vậy \(y = \frac{1}{2}\) là tiệm cận ngang của đồ thị hàm số đã cho. b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2{\rm{x}}}}{{x - 3}} = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{\rm{x}}}}{{x - 3}} = + \infty \) Vậy \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2\) Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho. c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{2}{3}} \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - \infty \) Vậy \(x = - \frac{2}{3}\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2\) Vậy \(y = - 2\) là tiệm cận ngang của đồ thị hàm số đã cho.
Quảng cáo
|