Bài 1.7 trang 8 SBT giải tích 12

Giải bài 1.7 trang 8 sách bài tập giải tích 12. Chứng minh các bất đẳng thức sau...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các bất đẳng thức sau:

LG câu a

a) \(\tan x > \sin x\), \(0 < x < \dfrac{\pi }{2}\)

Phương pháp giải:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) và chứng minh nó đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) ta có:

\(f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} - \cos x\) \( = \dfrac{{1 - {{\cos }^3}x}}{{{{\cos }^2}x}} > 0\) với \(\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\) vì \(\cos x < 1\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) nên \({\cos ^3}x < 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)

Do đó hàm số \(f\left( x \right) = \tan x - \sin x\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\)

\( \Rightarrow f\left( x \right) > f\left( 0 \right) = 0\) \( \Rightarrow \tan x - \sin x > 0 \Leftrightarrow \tan x > \sin x\)  với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\).

Quảng cáo

Lộ trình SUN 2025

LG câu b

b) \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\)

Phương pháp giải:

Xét các hàm số \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) và \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) và chứng minh chúng nghịch biến trên \(\left( {0; + \infty } \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) trên \(\left( {0; + \infty } \right)\) ta có: \(f'\left( x \right) = \dfrac{1}{2} - \dfrac{1}{4}x - \dfrac{1}{{2\sqrt {x + 1} }}\).

Vì \(x > 0\) nên \(f'\left( x \right) < \dfrac{1}{2} - \dfrac{1}{4}.0 - \dfrac{1}{{2\sqrt {0 + 1} }} = 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(f\left( x \right) < f\left( 0 \right) = 0\) \( \Rightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x}  < 0\) \( \Leftrightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} \,\,\left( 1 \right)\)

Xét \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) ta có: \(g'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} - \dfrac{1}{2}\)

Vì \(x > 0\) nên \(g'\left( x \right) < \dfrac{1}{{2\sqrt {0 + 1} }} - \dfrac{1}{2} = 0\) hay \(y = g\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(g\left( x \right) < g\left( 0 \right) = 0\) hay \(\sqrt {1 + x}  - 1 - \dfrac{1}{2}x < 0\) \( \Leftrightarrow \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\). (đpcm)

Loigiaihay.com

Quảng cáo
close