Giải bài 11 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

Mặt cầu có phương trình nào sau đây đi qua gốc toạ độ? A. (left( {{S_1}} right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2 = 0). B. (left( {{S_2}} right):{x^2} + {y^2} + {z^2} - 4y + 6{rm{z}} - 2 = 0). C. (left( {{S_3}} right):{x^2} + {y^2} + {z^2} + 2{rm{x}} + 6{rm{z}} = 0). D. (left( {{S_4}} right):{x^2} + {y^2} + {{bf{z}}^2} + 2x - 4y + 6{rm{z}} - 2 = 0).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Mặt cầu có phương trình nào sau đây đi qua gốc toạ độ?

A. \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2 = 0\).

B. \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} - 4y + 6{\rm{z}} - 2 = 0\).

C. \(\left( {{S_3}} \right):{x^2} + {y^2} + {z^2} + 2{\rm{x}} + 6{\rm{z}} = 0\).

D. \(\left( {{S_4}} \right):{x^2} + {y^2} + {{\bf{z}}^2} + 2x - 4y + 6{\rm{z}} - 2 = 0\).

Phương pháp giải - Xem chi tiết

Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) nằm trên mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2c{\rm{z}} + d = 0\) nếu \(x_0^2 + y_0^2 + z_0^2 - 2a{x_0} - 2b{y_0} - 2c{{\rm{z}}_0} + d = 0\).

Lời giải chi tiết

Ta có: \({0^2} + {0^2} + {0^2} + 2.0 + 6.0 = 0\) nên mặt cầu \(\left( {{S_3}} \right):{x^2} + {y^2} + {z^2} + 2{\rm{x}} + 6{\rm{z}} = 0\) đi qua gốc toạ độ.

Chọn C.

  • Giải bài 12 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z - 3} right)^2} = 9), Điểm nào sau đây nằm ngoài mặt cầu (left( S right))? A. (Mleft( { - 1;2;5} right)). B. (Nleft( {0;3;2} right)). C. (Pleft( { - 1;6; - 1} right)). D. (Qleft( {2;4;5} right)).

  • Giải bài 13 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt phẳng (left( P right)) đi qua ba điểm (Aleft( {0;1;1} right),Bleft( {3;2;2} right),Cleft( {4;3;5} right)). a) Mặt phẳng (left( P right)) có cặp vectơ chỉ phương là (overrightarrow {AB} = left( {3;1;1} right);overrightarrow {AC} = left( {4;2;4} right)). b) Mặt phẳng (left( P right)) có vectơ pháp tuyến là (overrightarrow n = left( {1;4;1} right)). c) Mặt phẳng (left( P right)) đi qua điểm (Mleft( {1;2

  • Giải bài 14 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho điểm (Mleft( {2;0;0} right)) và mặt phẳng (left( P right):2x - y - 2z + 11 = 0). a) Điểm (Aleft( {0;5;3} right)) thuộc mặt phẳng (left( P right)). b) (dleft( {M,left( P right)} right) = frac{5}{9}). c) Đường thẳng (MA) vuông góc với (left( P right)). d) Đường thẳng (d:frac{{x - 7}}{1} = frac{{y - 9}}{{ - 2}} = frac{{z - 31}}{2}) song song với (left( P right)).

  • Giải bài 15 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai điểm (Aleft( {2;1; - 2} right),Bleft( { - 2; - 2; - 9} right)) và đường thẳng (d:left{ begin{array}{l}x = t\y = - 1 + t\z = - tend{array} right.). a) Điểm (A) thuộc đường thẳng (d). b) Điểm (B) thuộc đường thẳng (d). c) Đường thẳng (AB) vuông góc với (d). d) (overrightarrow {AB} = left( {4;3; - 7} right)).

  • Giải bài 16 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai đường thẳng (d:frac{{x + 2}}{2} = frac{y}{{ - 1}} = frac{{z + 1}}{2}) và (d':frac{{x - 2}}{3} = frac{y}{{ - 4}} = frac{{z - 1}}{{ - 5}}). a) Đường thẳng (d) đi qua điểm (Mleft( { - 2;0; - 1} right)). b) Đường thẳng (d) có vectơ chỉ phương (overrightarrow a = left( { - 4;2; - 4} right)). c) Đường thẳng (d') không đi qua điểm (Nleft( {2;0;1} right)). d) Đường thẳng (d) vuông góc với (d').

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close